Kinase-dead ATM protein is highly oncogenic and can be preferentially targeted by Topo-isomerase I inhibitors

  1. Kenta Yamamoto
  2. Jiguang Wang
  3. Lisa Sprinzen
  4. Jun Xu
  5. Christopher J Haddock
  6. Chen Li
  7. Brian J Lee
  8. Denis G Loredan
  9. Wenxia Jiang
  10. Alessandro Vindigni
  11. Dong Wang
  12. Raul Rabadan
  13. Shan Zha  Is a corresponding author
  1. Columbia Unviersity, United States
  2. University of California San Diego, United States
  3. Saint Louis University School of Medicine, United States
  4. Columbia University, United States

Abstract

Missense mutations in ATM kinase, a master regulator of DNA damage responses, are found in many cancers, but their impact on ATM function and implications for cancer therapy are largely unknown. Here we report that 72% of cancer-associated ATM mutations are missense mutations that are enriched around the kinase domain. Expression of kinase-dead ATM (AtmKD/-) is more oncogenic than loss of ATM (Atm-/-) in mouse models, leading to earlier and more frequent lymphomas with Pten deletions. Kinase-dead ATM protein (Atm-KD), but not loss of ATM (Atm-null), prevents replication-dependent removal of Topo-isomerase I-DNA adducts at the step of strand cleavage, leading to severe genomic instability and hypersensitivity to Topo-isomerase I inhibitors. Correspondingly, Topo-isomerase I inhibitors effectively and preferentially eliminate AtmKD/-, but not Atm-proficient or Atm-/- leukemia in animal models. These findings identify ATM kinase-domain missense mutations as a potent oncogenic event and a biomarker for Topo-isomerase I inhibitor based therapy.

Article and author information

Author details

  1. Kenta Yamamoto

    Insitute for Cancer Genetics, Columbia Unviersity, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jiguang Wang

    Department of Biomedical Informatics and Department of Systems Biology, , College of Physicians & Surgeons, Columbia Unviersity, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Lisa Sprinzen

    Insitute for Cancer Genetics, Columbia Unviersity, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jun Xu

    Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Christopher J Haddock

    Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Chen Li

    Insitute for Cancer Genetics, Columbia Unviersity, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Brian J Lee

    Insitute for Cancer Genetics, Columbia Unviersity, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Denis G Loredan

    Insitute for Cancer Genetics, Columbia Unviersity, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Wenxia Jiang

    Institute for Cancer Genetics, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Alessandro Vindigni

    Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Dong Wang

    Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Raul Rabadan

    Department of Biomedical Informatics and Department of Systems Biology, College of Physicians & Surgeons, Columbia Unviersity, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Shan Zha

    Institute for Cancer Genetics, Columbia University, New York, United States
    For correspondence
    sz2296@cumc.columbia.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Johannes Walter, Harvard Medical School, United States

Ethics

Animal experimentation: All the animal work was approved by and performed according to the regulations of the Institutional Animal Care and Use Committee (IACUC) of Columbia University (protocol no AAAF7653, AAAD6250, AAAJ3651)

Version history

  1. Received: January 26, 2016
  2. Accepted: June 14, 2016
  3. Accepted Manuscript published: June 15, 2016 (version 1)
  4. Version of Record published: July 22, 2016 (version 2)

Copyright

© 2016, Yamamoto et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,957
    views
  • 722
    downloads
  • 39
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kenta Yamamoto
  2. Jiguang Wang
  3. Lisa Sprinzen
  4. Jun Xu
  5. Christopher J Haddock
  6. Chen Li
  7. Brian J Lee
  8. Denis G Loredan
  9. Wenxia Jiang
  10. Alessandro Vindigni
  11. Dong Wang
  12. Raul Rabadan
  13. Shan Zha
(2016)
Kinase-dead ATM protein is highly oncogenic and can be preferentially targeted by Topo-isomerase I inhibitors
eLife 5:e14709.
https://doi.org/10.7554/eLife.14709

Share this article

https://doi.org/10.7554/eLife.14709

Further reading

    1. Cancer Biology
    2. Cell Biology
    Camille Dantzer, Justine Vaché ... Violaine Moreau
    Research Article

    Immune checkpoint inhibitors have produced encouraging results in cancer patients. However, the majority of ß-catenin-mutated tumors have been described as lacking immune infiltrates and resistant to immunotherapy. The mechanisms by which oncogenic ß-catenin affects immune surveillance remain unclear. Herein, we highlighted the involvement of ß-catenin in the regulation of the exosomal pathway and, by extension, in immune/cancer cell communication in hepatocellular carcinoma (HCC). We showed that mutated ß-catenin represses expression of SDC4 and RAB27A, two main actors in exosome biogenesis, in both liver cancer cell lines and HCC patient samples. Using nanoparticle tracking analysis and live-cell imaging, we further demonstrated that activated ß-catenin represses exosome release. Then, we demonstrated in 3D spheroid models that activation of β-catenin promotes a decrease in immune cell infiltration through a defect in exosome secretion. Taken together, our results provide the first evidence that oncogenic ß-catenin plays a key role in exosome biogenesis. Our study gives new insight into the impact of ß-catenin mutations on tumor microenvironment remodeling, which could lead to the development of new strategies to enhance immunotherapeutic response.

    1. Cancer Biology
    Fang Huang, Zhenwei Dai ... Yang Wang
    Research Article

    Aberrant alternative splicing is well-known to be closely associated with tumorigenesis of various cancers. However, the intricate mechanisms underlying breast cancer metastasis driven by deregulated splicing events remain largely unexplored. Here, we unveiled that RBM7 is decreased in lymph node and distant organ metastases of breast cancer as compared to primary lesions and low expression of RBM7 is correlated with the reduced disease-free survival of breast cancer patients. Breast cancer cells with RBM7 depletion exhibited an increased potential for lung metastasis compared to scramble control cells. The absence of RBM7 stimulated breast cancer cell migration, invasion, and angiogenesis. Mechanistically, RBM7 controlled the splicing switch of MFGE8, favoring the production of the predominant isoform of MFGE8, MFGE8-L. This resulted in the attenuation of STAT1 phosphorylation and alterations in cell adhesion molecules. MFGE8-L exerted an inhibitory effect on the migratory and invasive capability of breast cancer cells, while the truncated isoform MFGE8-S, which lack the second F5/8 type C domain had the opposite effect. In addition, RBM7 negatively regulates the NF-κB cascade and an NF-κB inhibitor could obstruct the increase in HUVEC tube formation caused by RBM7 silencing. Clinically, we noticed a positive correlation between RBM7 expression and MFGE8 exon7 inclusion in breast cancer tissues, providing new mechanistic insights for molecular-targeted therapy in combating breast cancer.