Kinase-dead ATM protein is highly oncogenic and can be preferentially targeted by Topo-isomerase I inhibitors

  1. Kenta Yamamoto
  2. Jiguang Wang
  3. Lisa Sprinzen
  4. Jun Xu
  5. Christopher J Haddock
  6. Chen Li
  7. Brian J Lee
  8. Denis G Loredan
  9. Wenxia Jiang
  10. Alessandro Vindigni
  11. Dong Wang
  12. Raul Rabadan
  13. Shan Zha  Is a corresponding author
  1. Columbia Unviersity, United States
  2. University of California San Diego, United States
  3. Saint Louis University School of Medicine, United States
  4. Columbia University, United States

Abstract

Missense mutations in ATM kinase, a master regulator of DNA damage responses, are found in many cancers, but their impact on ATM function and implications for cancer therapy are largely unknown. Here we report that 72% of cancer-associated ATM mutations are missense mutations that are enriched around the kinase domain. Expression of kinase-dead ATM (AtmKD/-) is more oncogenic than loss of ATM (Atm-/-) in mouse models, leading to earlier and more frequent lymphomas with Pten deletions. Kinase-dead ATM protein (Atm-KD), but not loss of ATM (Atm-null), prevents replication-dependent removal of Topo-isomerase I-DNA adducts at the step of strand cleavage, leading to severe genomic instability and hypersensitivity to Topo-isomerase I inhibitors. Correspondingly, Topo-isomerase I inhibitors effectively and preferentially eliminate AtmKD/-, but not Atm-proficient or Atm-/- leukemia in animal models. These findings identify ATM kinase-domain missense mutations as a potent oncogenic event and a biomarker for Topo-isomerase I inhibitor based therapy.

Article and author information

Author details

  1. Kenta Yamamoto

    Insitute for Cancer Genetics, Columbia Unviersity, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jiguang Wang

    Department of Biomedical Informatics and Department of Systems Biology, , College of Physicians & Surgeons, Columbia Unviersity, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Lisa Sprinzen

    Insitute for Cancer Genetics, Columbia Unviersity, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jun Xu

    Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Christopher J Haddock

    Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Chen Li

    Insitute for Cancer Genetics, Columbia Unviersity, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Brian J Lee

    Insitute for Cancer Genetics, Columbia Unviersity, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Denis G Loredan

    Insitute for Cancer Genetics, Columbia Unviersity, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Wenxia Jiang

    Institute for Cancer Genetics, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Alessandro Vindigni

    Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Dong Wang

    Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Raul Rabadan

    Department of Biomedical Informatics and Department of Systems Biology, College of Physicians & Surgeons, Columbia Unviersity, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Shan Zha

    Institute for Cancer Genetics, Columbia University, New York, United States
    For correspondence
    sz2296@cumc.columbia.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Johannes Walter, Harvard Medical School, United States

Ethics

Animal experimentation: All the animal work was approved by and performed according to the regulations of the Institutional Animal Care and Use Committee (IACUC) of Columbia University (protocol no AAAF7653, AAAD6250, AAAJ3651)

Version history

  1. Received: January 26, 2016
  2. Accepted: June 14, 2016
  3. Accepted Manuscript published: June 15, 2016 (version 1)
  4. Version of Record published: July 22, 2016 (version 2)

Copyright

© 2016, Yamamoto et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,912
    views
  • 717
    downloads
  • 37
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kenta Yamamoto
  2. Jiguang Wang
  3. Lisa Sprinzen
  4. Jun Xu
  5. Christopher J Haddock
  6. Chen Li
  7. Brian J Lee
  8. Denis G Loredan
  9. Wenxia Jiang
  10. Alessandro Vindigni
  11. Dong Wang
  12. Raul Rabadan
  13. Shan Zha
(2016)
Kinase-dead ATM protein is highly oncogenic and can be preferentially targeted by Topo-isomerase I inhibitors
eLife 5:e14709.
https://doi.org/10.7554/eLife.14709

Share this article

https://doi.org/10.7554/eLife.14709

Further reading

    1. Cancer Biology
    2. Genetics and Genomics
    Kevin Nuno, Armon Azizi ... Ravindra Majeti
    Research Article

    Relapse of acute myeloid leukemia (AML) is highly aggressive and often treatment refractory. We analyzed previously published AML relapse cohorts and found that 40% of relapses occur without changes in driver mutations, suggesting that non-genetic mechanisms drive relapse in a large proportion of cases. We therefore characterized epigenetic patterns of AML relapse using 26 matched diagnosis-relapse samples with ATAC-seq. This analysis identified a relapse-specific chromatin accessibility signature for mutationally stable AML, suggesting that AML undergoes epigenetic evolution at relapse independent of mutational changes. Analysis of leukemia stem cell (LSC) chromatin changes at relapse indicated that this leukemic compartment underwent significantly less epigenetic evolution than non-LSCs, while epigenetic changes in non-LSCs reflected overall evolution of the bulk leukemia. Finally, we used single-cell ATAC-seq paired with mitochondrial sequencing (mtscATAC) to map clones from diagnosis into relapse along with their epigenetic features. We found that distinct mitochondrially-defined clones exhibit more similar chromatin accessibility at relapse relative to diagnosis, demonstrating convergent epigenetic evolution in relapsed AML. These results demonstrate that epigenetic evolution is a feature of relapsed AML and that convergent epigenetic evolution can occur following treatment with induction chemotherapy.

    1. Cancer Biology
    2. Cell Biology
    Ibtisam Ibtisam, Alexei F Kisselev
    Short Report

    Rapid recovery of proteasome activity may contribute to intrinsic and acquired resistance to FDA-approved proteasome inhibitors. Previous studies have demonstrated that the expression of proteasome genes in cells treated with sub-lethal concentrations of proteasome inhibitors is upregulated by the transcription factor Nrf1 (NFE2L1), which is activated by a DDI2 protease. Here, we demonstrate that the recovery of proteasome activity is DDI2-independent and occurs before transcription of proteasomal genes is upregulated but requires protein translation. Thus, mammalian cells possess an additional DDI2 and transcription-independent pathway for the rapid recovery of proteasome activity after proteasome inhibition.