Abstract

TP53 is conventionally thought to prevent cancer formation and progression to metastasis, while mutant TP53 has transforming activities. However, in the clinic, TP53 mutation status does not accurately predict cancer progression. Here we report, based on clinical analysis corroborated with experimental data, that the p53 isoform Δ133p53β promotes cancer cell invasion, regardless of TP53 mutation status. Δ133p53β increases risk of cancer recurrence and death in breast cancer patients. Furthermore Δ133p53β is critical to define invasiveness in a panel of breast and colon cell lines, expressing WT or mutant TP53. Endogenous mutant Δ133p53β depletion prevents invasiveness without affecting mutant full-length p53 protein expression. Mechanistically WT and mutant Δ133p53β induces EMT. Our findings provide explanations to 2 long-lasting and important clinical conundrums: how WT TP53 can promote cancer cell invasion and reciprocally why mutant TP53 gene does not systematically induce cancer progression.

Article and author information

Author details

  1. Gilles Gadea

    CNRS, Centre de Recherche de Biochimie Macromoléculaire de Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Nikola Arsic

    CNRS, Centre de Recherche de Biochimie Macromoléculaire de Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Kenneth Fernandes

    Division of Cancer Research, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Alexandra Diot

    Division of Cancer Research, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Sébastien M Joruiz

    Division of Cancer Research, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Samer Abdallah

    CNRS, Centre de Recherche de Biochimie Macromoléculaire de Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Valerie Meuray

    Division of Cancer Research, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Stéphanie Vinot

    CNRS, Centre de Recherche de Biochimie Macromoléculaire de Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Christelle Anguille

    CNRS, Centre de Recherche de Biochimie Macromoléculaire de Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Judit Remenyi

    Division of Cancer Research, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Marie P Khoury

    Division of Cancer Research, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Philip R Quinlan

    Division of Cancer Research, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  13. Colin A Purdie

    Division of Cancer Research, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  14. Lee B Jordan

    Division of Cancer Research, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  15. Frances V Fuller-Pace

    Division of Cancer Research, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5859-2932
  16. Marion de Toledo

    Université Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  17. Maïlys Cren

    Université Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  18. Alastair M Thompson

    Division of Cancer Research, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  19. Jean-Christophe Bourdon

    Division of Cancer Research, University of Dundee, Dundee, United Kingdom
    For correspondence
    j.bourdon@dundee.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  20. Pierre Roux

    CNRS, Centre de Recherche de Biochimie Macromoléculaire de Montpellier, Montpellier, France
    For correspondence
    pierre.roux@crbm.cnrs.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0671-5413

Funding

Breast Cancer Campaign (2012MaySF127)

  • Jean-Christophe Bourdon

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Samples were examined following Local Research EthicsCommittee approval under delegated authority by the Tayside Tissue Bank(www.taysidetissuebank.org).

Copyright

© 2016, Gadea et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,098
    views
  • 617
    downloads
  • 51
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gilles Gadea
  2. Nikola Arsic
  3. Kenneth Fernandes
  4. Alexandra Diot
  5. Sébastien M Joruiz
  6. Samer Abdallah
  7. Valerie Meuray
  8. Stéphanie Vinot
  9. Christelle Anguille
  10. Judit Remenyi
  11. Marie P Khoury
  12. Philip R Quinlan
  13. Colin A Purdie
  14. Lee B Jordan
  15. Frances V Fuller-Pace
  16. Marion de Toledo
  17. Maïlys Cren
  18. Alastair M Thompson
  19. Jean-Christophe Bourdon
  20. Pierre Roux
(2016)
TP53 drives invasion through expression of its Δ133p53β variant
eLife 5:e14734.
https://doi.org/10.7554/eLife.14734

Share this article

https://doi.org/10.7554/eLife.14734

Further reading

    1. Cancer Biology
    Ismail M Meraz, Mourad Majidi ... Jack A Roth
    Research Article

    Expression of NPRL2/TUSC4, a tumor-suppressor gene, is reduced in many cancers including NSCLC. Restoration of NPRL2 induces DNA damage, apoptosis, and cell-cycle arrest. We investigated NPRL2 antitumor immune responses in aPD1R/KRAS/STK11mt NSCLC in humanized-mice. Humanized-mice were generated by transplanting fresh human cord blood-derived CD34 stem cells into sub-lethally irradiated NSG mice. Lung-metastases were developed from KRAS/STK11mt/aPD1R A549 cells and treated with NPRL2 w/wo pembrolizumab. NPRL2-treatment reduced lung metastases significantly, whereas pembrolizumab was ineffective. Antitumor effect was greater in humanized than non-humanized-mice. NPRL2 + pembrolizumab was not synergistic in KRAS/STK11mt/aPD1R tumors but was synergistic in KRASwt/aPD1S H1299. NPRL2 also showed a significant antitumor effect on KRASmt/aPD1R LLC2 syngeneic-tumors. The antitumor effect was correlated with increased infiltration of human cytotoxic-T, HLA-DR+DC, CD11c+DC, and downregulation of myeloid and regulatory-T cells in TME. Antitumor effect was abolished upon in-vivo depletion of CD8-T, macrophages, and CD4-T cells whereas remained unaffected upon NK-cell depletion. A distinctive protein-expression profile was found after NPRL2 treatment. IFNγ, CD8b, and TBX21 associated with T-cell functions were significantly increased, whereas FOXP3, TGFB1/B2, and IL-10RA were strongly inhibited by NPRL2. A list of T-cell co-inhibitory molecules was also downregulated. Restoration of NPRL2 exhibited significantly slower tumor growth in humanized-mice, which was associated with increased presence of human cytotoxic-T, and DC and decreased percentage of Treg, MDSC, and TAM in TME. NPRL2-stable cells showed a substantial increase in colony-formation inhibition and heightened sensitivity to carboplatin. Stable-expression of NPRL2 resulted in the downregulation of MAPK and AKT-mTOR signaling. Taken-together, NPRL2 gene-therapy induces antitumor activity on KRAS/STK11mt/aPD1R tumors through DC-mediated antigen-presentation and cytotoxic immune-cell activation.

    1. Biochemistry and Chemical Biology
    2. Cancer Biology
    Flavie Coquel, Sing-Zong Ho ... Philippe Pasero
    Research Article

    Cancer cells display high levels of oncogene-induced replication stress (RS) and rely on DNA damage checkpoint for viability. This feature is exploited by cancer therapies to either increase RS to unbearable levels or inhibit checkpoint kinases involved in the DNA damage response. Thus far, treatments that combine these two strategies have shown promise but also have severe adverse effects. To identify novel, better-tolerated anticancer combinations, we screened a collection of plant extracts and found two natural compounds from the plant, Psoralea corylifolia, that synergistically inhibit cancer cell proliferation. Bakuchiol inhibited DNA replication and activated the checkpoint kinase CHK1 by targeting DNA polymerases. Isobavachalcone interfered with DNA double-strand break repair by inhibiting the checkpoint kinase CHK2 and DNA end resection. The combination of bakuchiol and isobavachalcone synergistically inhibited cancer cell proliferation in vitro. Importantly, it also prevented tumor development in xenografted NOD/SCID mice. The synergistic effect of inhibiting DNA replication and CHK2 signaling identifies a vulnerability of cancer cells that might be exploited by using clinically approved inhibitors in novel combination therapies.