Long-term intravital imaging of the multicolor-coded tumor microenvironment during combination immunotherapy

  1. Shuhong Qi
  2. Hui Li
  3. Lisen Lu
  4. Zhongyang Qi
  5. Lei Liu
  6. Lu Chen
  7. Guanxin Shen
  8. Ling Fu
  9. Qingming Luo  Is a corresponding author
  10. Zhihong Zhang  Is a corresponding author
  1. Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, China
  2. Tongji Medical College, China

Abstract

The combined-immunotherapy of adoptive cell therapy (ACT) and cyclophosphamide (CTX) is one of the most efficient treatments for melanoma patients. However, synergistic effects of CTX and ACT on the spatio-temporal dynamics of immunocytes in vivo have not been described. Here, we visualized key cell events of immunotherapy-elicited immunoreactions in a multicolor-coded tumor microenvironment, and then established an optimal strategy of metronomic combined-immunotherapy to enhance anti-tumor efficacy. Intravital imaging data indicated that regulatory T cells formed an 'immunosuppressive ring' around a solid tumor. The CTX-ACT combined-treatment elicited synergistic immunoreactions in tumor areas, which included relieving the immune suppression, triggering the transient activation of endogenous tumor-infiltrating immunocytes, increasing the accumulation of adoptive cytotoxic T lymphocytes, and accelerating the infiltration of dendritic cells. These insights into the spatio-temporal dynamics of immunocytes are beneficial for optimizing immunotherapy and provide new approaches for elucidating the mechanisms underlying the involvement of immunocytes in cancer immunotherapy.

Article and author information

Author details

  1. Shuhong Qi

    Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Hui Li

    Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Lisen Lu

    Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Zhongyang Qi

    Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Lei Liu

    Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Lu Chen

    Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Guanxin Shen

    Department of Immunology, Tongji Medical College, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Ling Fu

    Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Qingming Luo

    Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China
    For correspondence
    qluo@mail.hust.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  10. Zhihong Zhang

    Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China
    For correspondence
    czyzzh@mail.hust.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5227-8926

Funding

National Natural Science Foundation of China (91442201)

  • Shuhong Qi
  • Lisen Lu
  • Lei Liu
  • Zhihong Zhang

Ministry of Science and Technology of the People's Republic of China (2011CB910401)

  • Shuhong Qi
  • Hui Li
  • Lei Liu
  • Qingming Luo
  • Zhihong Zhang

National Natural Science Foundation of China (61421064)

  • Ling Fu
  • Qingming Luo
  • Zhihong Zhang

Ministry of Education of the People's Republic of China (2015ZDTD014)

  • Shuhong Qi
  • Lisen Lu
  • Lei Liu
  • Zhihong Zhang

Ministry of Science and Technology of the People's Republic of China (Director fund of Wuhan National Laboratory for Optoelectronics)

  • Shuhong Qi
  • Lisen Lu
  • Lei Liu
  • Qingming Luo
  • Zhihong Zhang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of Hubei Provincial Animal Care and Use Committee. The protocol was approved by the Animal Experimentation Ethics Committee of Huazhong University of Science and Technology (reference number: 452). All surgery was performed under ketamine and xylazine, and all intravital imaging experiments were performed under 1-3 % isoflurane in oxygen, every effort was made to minimize suffering.

Copyright

© 2016, Qi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,749
    views
  • 806
    downloads
  • 51
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shuhong Qi
  2. Hui Li
  3. Lisen Lu
  4. Zhongyang Qi
  5. Lei Liu
  6. Lu Chen
  7. Guanxin Shen
  8. Ling Fu
  9. Qingming Luo
  10. Zhihong Zhang
(2016)
Long-term intravital imaging of the multicolor-coded tumor microenvironment during combination immunotherapy
eLife 5:e14756.
https://doi.org/10.7554/eLife.14756

Share this article

https://doi.org/10.7554/eLife.14756

Further reading

    1. Cancer Biology
    Han V Han, Richard Efem ... Richard Z Lin
    Research Article

    Most human pancreatic ductal adenocarcinoma (PDAC) are not infiltrated with cytotoxic T cells and are highly resistant to immunotherapy. Over 90% of PDAC have oncogenic KRAS mutations, and phosphoinositide 3-kinases (PI3Ks) are direct effectors of KRAS. Our previous study demonstrated that ablation of Pik3ca in KPC (KrasG12D; Trp53R172H; Pdx1-Cre) pancreatic cancer cells induced host T cells to infiltrate and completely eliminate the tumors in a syngeneic orthotopic implantation mouse model. Now, we show that implantation of Pik3ca−/− KPC (named αKO) cancer cells induces clonal enrichment of cytotoxic T cells infiltrating the pancreatic tumors. To identify potential molecules that can regulate the activity of these anti-tumor T cells, we conducted an in vivo genome-wide gene-deletion screen using αKO cells implanted in the mouse pancreas. The result shows that deletion of propionyl-CoA carboxylase subunit B gene (Pccb) in αKO cells (named p-αKO) leads to immune evasion, tumor progression, and death of host mice. Surprisingly, p-αKO tumors are still infiltrated with clonally enriched CD8+ T cells but they are inactive against tumor cells. However, blockade of PD-L1/PD1 interaction reactivated these clonally enriched T cells infiltrating p-αKO tumors, leading to slower tumor progression and improve survival of host mice. These results indicate that Pccb can modulate the activity of cytotoxic T cells infiltrating some pancreatic cancers and this understanding may lead to improvement in immunotherapy for this difficult-to-treat cancer.

    1. Cancer Biology
    2. Immunology and Inflammation
    Almudena Mendez-Perez, Andres M Acosta-Moreno ... Esteban Veiga
    Short Report

    In this study, we present a proof-of-concept classical vaccination experiment that validates the in silico identification of tumor neoantigens (TNAs) using a machine learning-based platform called NAP-CNB. Unlike other TNA predictors, NAP-CNB leverages RNA-seq data to consider the relative expression of neoantigens in tumors. Our experiments show the efficacy of NAP-CNB. Predicted TNAs elicited potent antitumor responses in mice following classical vaccination protocols. Notably, optimal antitumor activity was observed when targeting the antigen with higher expression in the tumor, which was not the most immunogenic. Additionally, the vaccination combining different neoantigens resulted in vastly improved responses compared to each one individually, showing the worth of multiantigen-based approaches. These findings validate NAP-CNB as an innovative TNA identification platform and make a substantial contribution to advancing the next generation of personalized immunotherapies.