Abstract

Paraspeckles are nuclear bodies form around the long non-coding RNA, Neat1, and RNA-binding proteins. While their role is not fully understood, they are believed to control gene expression at a post-transcriptional level by means of the nuclear retention of mRNA containing in their 3'-UTR inverted repeats of Alu sequences (IRAlu). In this study, we found that, in pituitary cells, all components of paraspeckles including four major proteins and Neat1 displayed a circadian expression pattern. Furthermore the insertion of IRAlu at the 3'-UTR of the EGFP cDNA led to a rhythmic circadian nuclear retention of the egfp mRNA that was lost when paraspeckles were disrupted whereas insertion of a single antisense Alu had only a weak effect. Using real-time video-microscopy, these IRAlu were further shown to drive a circadian expression of EGFP protein. This study shows that paraspeckles, thanks to their circadian expression, control circadian gene expression at a post-transcriptional level.

Data availability

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Manon Torres

    Faculté de Médecine Nord, Aix Marseille Université, CNRS, CRN2M-UMR7286, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Denis Becquet

    Faculté de Médecine Nord, Aix Marseille Université, CNRS, CRN2M-UMR7286, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Marie-Pierre Blanchard

    Faculté de Médecine Nord, Aix Marseille Université, CNRS, CRN2M-UMR7286, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Séverine Guillen

    Faculté de Médecine Nord, Aix Marseille Université, CNRS, CRN2M-UMR7286, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Bénédicte Boyer

    Faculté de Médecine Nord, Aix Marseille Université, CNRS, CRN2M-UMR7286, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Mathias Moreno

    Faculté de Médecine Nord, Aix Marseille Université, CNRS, CRN2M-UMR7286, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Jean-Louis Franc

    Faculté de Médecine Nord, Aix Marseille Université, CNRS, CRN2M-UMR7286, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2900-5468
  8. Anne-Marie François-Bellan

    Faculté de Médecine Nord, Aix Marseille Université, CNRS, CRN2M-UMR7286, Marseille, France
    For correspondence
    anne-marie.francois@univ-amu.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3278-4642

Funding

Pfizer-SFE award (Research price 2014)

  • Anne-Marie François-Bellan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Torres et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,670
    views
  • 564
    downloads
  • 39
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Manon Torres
  2. Denis Becquet
  3. Marie-Pierre Blanchard
  4. Séverine Guillen
  5. Bénédicte Boyer
  6. Mathias Moreno
  7. Jean-Louis Franc
  8. Anne-Marie François-Bellan
(2016)
Circadian RNA expression elicited by 3'-UTR IRAlu-paraspeckle associated elements
eLife 5:e14837.
https://doi.org/10.7554/eLife.14837

Share this article

https://doi.org/10.7554/eLife.14837

Further reading

    1. Cell Biology
    Zewei Zhao, Longyun Hu ... Zhonghan Yang
    Research Article

    The induction of adipose thermogenesis plays a critical role in maintaining body temperature and improving metabolic homeostasis to combat obesity. β3-adrenoceptor (β3-AR) is widely recognized as a canonical β-adrenergic G-protein-coupled receptor (GPCR) that plays a crucial role in mediating adipose thermogenesis in mice. Nonetheless, the limited expression of β3-AR in human adipocytes restricts its clinical application. The objective of this study was to identify a GPCR that is highly expressed in human adipocytes and to explore its potential involvement in adipose thermogenesis. Our research findings have demonstrated that the adhesion G-protein-coupled receptor A3 (ADGRA3), an orphan GPCR, plays a significant role in adipose thermogenesis through its constitutively active effects. ADGRA3 exhibited high expression levels in human adipocytes and mouse brown fat. Furthermore, the knockdown of Adgra3 resulted in an exacerbated obese phenotype and a reduction in the expression of thermogenic markers in mice. Conversely, Adgra3 overexpression activated the adipose thermogenic program and improved metabolic homeostasis in mice without exogenous ligand. We found that ADGRA3 facilitates the biogenesis of beige human or mouse adipocytes in vitro. Moreover, hesperetin was identified as a potential agonist of ADGRA3, capable of inducing adipocyte browning and ameliorating insulin resistance in mice. In conclusion, our study demonstrated that the overexpression of constitutively active ADGRA3 or the activation of ADGRA3 by hesperetin can induce adipocyte browning by Gs-PKA-CREB axis. These findings indicate that the utilization of hesperetin and the selective overexpression of ADGRA3 in adipose tissue could serve as promising therapeutic strategies in the fight against obesity.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Bethany M Bartlett, Yatendra Kumar ... Wendy A Bickmore
    Research Article Updated

    During oncogene-induced senescence there are striking changes in the organisation of heterochromatin in the nucleus. This is accompanied by activation of a pro-inflammatory gene expression programme – the senescence-associated secretory phenotype (SASP) – driven by transcription factors such as NF-κB. The relationship between heterochromatin re-organisation and the SASP has been unclear. Here, we show that TPR, a protein of the nuclear pore complex basket required for heterochromatin re-organisation during senescence, is also required for the very early activation of NF-κB signalling during the stress-response phase of oncogene-induced senescence. This is prior to activation of the SASP and occurs without affecting NF-κB nuclear import. We show that TPR is required for the activation of innate immune signalling at these early stages of senescence and we link this to the formation of heterochromatin-enriched cytoplasmic chromatin fragments thought to bleb off from the nuclear periphery. We show that HMGA1 is also required for cytoplasmic chromatin fragment formation. Together these data suggest that re-organisation of heterochromatin is involved in altered structural integrity of the nuclear periphery during senescence, and that this can lead to activation of cytoplasmic nucleic acid sensing, NF-κB signalling, and activation of the SASP.