Abstract

Paraspeckles are nuclear bodies form around the long non-coding RNA, Neat1, and RNA-binding proteins. While their role is not fully understood, they are believed to control gene expression at a post-transcriptional level by means of the nuclear retention of mRNA containing in their 3'-UTR inverted repeats of Alu sequences (IRAlu). In this study, we found that, in pituitary cells, all components of paraspeckles including four major proteins and Neat1 displayed a circadian expression pattern. Furthermore the insertion of IRAlu at the 3'-UTR of the EGFP cDNA led to a rhythmic circadian nuclear retention of the egfp mRNA that was lost when paraspeckles were disrupted whereas insertion of a single antisense Alu had only a weak effect. Using real-time video-microscopy, these IRAlu were further shown to drive a circadian expression of EGFP protein. This study shows that paraspeckles, thanks to their circadian expression, control circadian gene expression at a post-transcriptional level.

Data availability

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Manon Torres

    Faculté de Médecine Nord, Aix Marseille Université, CNRS, CRN2M-UMR7286, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Denis Becquet

    Faculté de Médecine Nord, Aix Marseille Université, CNRS, CRN2M-UMR7286, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Marie-Pierre Blanchard

    Faculté de Médecine Nord, Aix Marseille Université, CNRS, CRN2M-UMR7286, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Séverine Guillen

    Faculté de Médecine Nord, Aix Marseille Université, CNRS, CRN2M-UMR7286, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Bénédicte Boyer

    Faculté de Médecine Nord, Aix Marseille Université, CNRS, CRN2M-UMR7286, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Mathias Moreno

    Faculté de Médecine Nord, Aix Marseille Université, CNRS, CRN2M-UMR7286, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Jean-Louis Franc

    Faculté de Médecine Nord, Aix Marseille Université, CNRS, CRN2M-UMR7286, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2900-5468
  8. Anne-Marie François-Bellan

    Faculté de Médecine Nord, Aix Marseille Université, CNRS, CRN2M-UMR7286, Marseille, France
    For correspondence
    anne-marie.francois@univ-amu.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3278-4642

Funding

Pfizer-SFE award (Research price 2014)

  • Anne-Marie François-Bellan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Robert H Singer, Albert Einstein College of Medicine, United States

Version history

  1. Received: January 29, 2016
  2. Accepted: July 20, 2016
  3. Accepted Manuscript published: July 21, 2016 (version 1)
  4. Version of Record published: August 16, 2016 (version 2)

Copyright

© 2016, Torres et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,595
    views
  • 555
    downloads
  • 35
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Manon Torres
  2. Denis Becquet
  3. Marie-Pierre Blanchard
  4. Séverine Guillen
  5. Bénédicte Boyer
  6. Mathias Moreno
  7. Jean-Louis Franc
  8. Anne-Marie François-Bellan
(2016)
Circadian RNA expression elicited by 3'-UTR IRAlu-paraspeckle associated elements
eLife 5:e14837.
https://doi.org/10.7554/eLife.14837

Share this article

https://doi.org/10.7554/eLife.14837

Further reading

    1. Cell Biology
    2. Immunology and Inflammation
    Kevin Portmann, Aline Linder, Klaus Eyer
    Research Article

    Cytokine polyfunctionality is a well-established concept in immune cells, especially T cells, and their ability to concurrently produce multiple cytokines has been associated with better immunological disease control and subsequent effectiveness during infection and disease. To date, only little is known about the secretion dynamics of those cells, masked by the widespread deployment of mainly time-integrated endpoint measurement techniques that do not easily differentiate between concurrent and sequential secretion. Here, we employed a single-cell microfluidic platform capable of resolving the secretion dynamics of individual PBMCs. To study the dynamics of poly-cytokine secretion, as well as the dynamics of concurrent and sequential polyfunctionality, we analyzed the response at different time points after ex vivo activation. First, we observed the simultaneous secretion of cytokines over the measurement time for most stimulants in a subpopulation of cells only. Second, polyfunctionality generally decreased with prolonged stimulation times and revealed no correlation with the concentration of secreted cytokines in response to stimulation. However, we observed a general trend towards higher cytokine secretion in polyfunctional cells, with their secretion dynamics being distinctly different from mono-cytokine-secreting cells. This study provided insights into the distinct secretion behavior of heterogenous cell populations after stimulation with well-described agents and such a system could provide a better understanding of various immune dynamics in therapy and disease.

    1. Cell Biology
    2. Neuroscience
    Toshiharu Ichinose, Shu Kondo ... Hiromu Tanimoto
    Research Article

    Multicellular organisms are composed of specialized cell types with distinct proteomes. While recent advances in single-cell transcriptome analyses have revealed differential expression of mRNAs, cellular diversity in translational profiles remains underinvestigated. By performing RNA-seq and Ribo-seq in genetically defined cells in the Drosophila brain, we here revealed substantial post-transcriptional regulations that augment the cell-type distinctions at the level of protein expression. Specifically, we found that translational efficiency of proteins fundamental to neuronal functions, such as ion channels and neurotransmitter receptors, was maintained low in glia, leading to their preferential translation in neurons. Notably, distribution of ribosome footprints on these mRNAs exhibited a remarkable bias toward the 5′ leaders in glia. Using transgenic reporter strains, we provide evidence that the small upstream open-reading frames in the 5’ leader confer selective translational suppression in glia. Overall, these findings underscore the profound impact of translational regulation in shaping the proteomics for cell-type distinction and provide new insights into the molecular mechanisms driving cell-type diversity.