Abstract

Paraspeckles are nuclear bodies form around the long non-coding RNA, Neat1, and RNA-binding proteins. While their role is not fully understood, they are believed to control gene expression at a post-transcriptional level by means of the nuclear retention of mRNA containing in their 3'-UTR inverted repeats of Alu sequences (IRAlu). In this study, we found that, in pituitary cells, all components of paraspeckles including four major proteins and Neat1 displayed a circadian expression pattern. Furthermore the insertion of IRAlu at the 3'-UTR of the EGFP cDNA led to a rhythmic circadian nuclear retention of the egfp mRNA that was lost when paraspeckles were disrupted whereas insertion of a single antisense Alu had only a weak effect. Using real-time video-microscopy, these IRAlu were further shown to drive a circadian expression of EGFP protein. This study shows that paraspeckles, thanks to their circadian expression, control circadian gene expression at a post-transcriptional level.

Data availability

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Manon Torres

    Faculté de Médecine Nord, Aix Marseille Université, CNRS, CRN2M-UMR7286, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Denis Becquet

    Faculté de Médecine Nord, Aix Marseille Université, CNRS, CRN2M-UMR7286, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Marie-Pierre Blanchard

    Faculté de Médecine Nord, Aix Marseille Université, CNRS, CRN2M-UMR7286, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Séverine Guillen

    Faculté de Médecine Nord, Aix Marseille Université, CNRS, CRN2M-UMR7286, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Bénédicte Boyer

    Faculté de Médecine Nord, Aix Marseille Université, CNRS, CRN2M-UMR7286, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Mathias Moreno

    Faculté de Médecine Nord, Aix Marseille Université, CNRS, CRN2M-UMR7286, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Jean-Louis Franc

    Faculté de Médecine Nord, Aix Marseille Université, CNRS, CRN2M-UMR7286, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2900-5468
  8. Anne-Marie François-Bellan

    Faculté de Médecine Nord, Aix Marseille Université, CNRS, CRN2M-UMR7286, Marseille, France
    For correspondence
    anne-marie.francois@univ-amu.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3278-4642

Funding

Pfizer-SFE award (Research price 2014)

  • Anne-Marie François-Bellan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Torres et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,689
    views
  • 567
    downloads
  • 41
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Manon Torres
  2. Denis Becquet
  3. Marie-Pierre Blanchard
  4. Séverine Guillen
  5. Bénédicte Boyer
  6. Mathias Moreno
  7. Jean-Louis Franc
  8. Anne-Marie François-Bellan
(2016)
Circadian RNA expression elicited by 3'-UTR IRAlu-paraspeckle associated elements
eLife 5:e14837.
https://doi.org/10.7554/eLife.14837

Share this article

https://doi.org/10.7554/eLife.14837

Further reading

    1. Cell Biology
    2. Evolutionary Biology
    Paul Richard J Yulo, Nicolas Desprat ... Heather L Hendrickson
    Research Article

    Maintenance of rod-shape in bacterial cells depends on the actin-like protein MreB. Deletion of mreB from Pseudomonas fluorescens SBW25 results in viable spherical cells of variable volume and reduced fitness. Using a combination of time-resolved microscopy and biochemical assay of peptidoglycan synthesis, we show that reduced fitness is a consequence of perturbed cell size homeostasis that arises primarily from differential growth of daughter cells. A 1000-generation selection experiment resulted in rapid restoration of fitness with derived cells retaining spherical shape. Mutations in the peptidoglycan synthesis protein Pbp1A were identified as the main route for evolutionary rescue with genetic reconstructions demonstrating causality. Compensatory pbp1A mutations that targeted transpeptidase activity enhanced homogeneity of cell wall synthesis on lateral surfaces and restored cell size homeostasis. Mechanistic explanations require enhanced understanding of why deletion of mreB causes heterogeneity in cell wall synthesis. We conclude by presenting two testable hypotheses, one of which posits that heterogeneity stems from non-functional cell wall synthesis machinery, while the second posits that the machinery is functional, albeit stalled. Overall, our data provide support for the second hypothesis and draw attention to the importance of balance between transpeptidase and glycosyltransferase functions of peptidoglycan building enzymes for cell shape determination.

    1. Cell Biology
    Kaima Tsukada, Rikiya Imamura ... Mikio Shimada
    Research Article

    Polynucleotide kinase phosphatase (PNKP) has enzymatic activities as 3′-phosphatase and 5′-kinase of DNA ends to promote DNA ligation and repair. Here, we show that cyclin-dependent kinases (CDKs) regulate the phosphorylation of threonine 118 (T118) in PNKP. This phosphorylation allows recruitment to the gapped DNA structure found in single-strand DNA (ssDNA) nicks and/or gaps between Okazaki fragments (OFs) during DNA replication. T118A (alanine)-substituted PNKP-expressing cells exhibited an accumulation of ssDNA gaps in S phase and accelerated replication fork progression. Furthermore, PNKP is involved in poly (ADP-ribose) polymerase 1 (PARP1)-dependent replication gap filling as part of a backup pathway in the absence of OFs ligation. Altogether, our data suggest that CDK-mediated PNKP phosphorylation at T118 is important for its recruitment to ssDNA gaps to proceed with OFs ligation and its backup repairs via the gap-filling pathway to maintain genome stability.