Compaction and segregation of sister chromatids via active loop extrusion

  1. Anton Goloborodko
  2. Maxim V Imakaev
  3. John F Marko
  4. Leonid Mirny  Is a corresponding author
  1. Massachusetts Institute of Technology, United States
  2. Northwestern University, United States

Abstract

The mechanism by which chromatids and chromosomes are segregated during mitosis and meiosis is a major puzzle of biology and biophysics. Using polymer simulations of chromosome dynamics, we show that a single mechanism of loop extrusion by condensins can robustly compact, segregate and disentangle chromosomes, arriving at individualized chromatids with morphology observed in vivo. Our model resolves the paradox of topological simplification concomitant with chromosome 'condensation', and explains how enzymes a few nanometers in size are able to control chromosome geometry and topology at micron length scales. We suggest that loop extrusion is a universal mechanism of genome folding that mediates functional interactions during interphase and compacts chromosomes during mitosis.

Article and author information

Author details

  1. Anton Goloborodko

    Department of Physics, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Maxim V Imakaev

    Department of Physics, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. John F Marko

    Department of Molecular Biosciences, Department of Physics and Astronomy, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Leonid Mirny

    Department of Physics, Massachusetts Institute of Technology, Cambridge, United States
    For correspondence
    leonid@mit.edu
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2016, Goloborodko et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,004
    views
  • 1,577
    downloads
  • 270
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anton Goloborodko
  2. Maxim V Imakaev
  3. John F Marko
  4. Leonid Mirny
(2016)
Compaction and segregation of sister chromatids via active loop extrusion
eLife 5:e14864.
https://doi.org/10.7554/eLife.14864

Share this article

https://doi.org/10.7554/eLife.14864

Further reading

    1. Structural Biology and Molecular Biophysics
    Mart GF Last, Leoni Abendstein ... Thomas H Sharp
    Tools and Resources

    Segmentation is a critical data processing step in many applications of cryo-electron tomography. Downstream analyses, such as subtomogram averaging, are often based on segmentation results, and are thus critically dependent on the availability of open-source software for accurate as well as high-throughput tomogram segmentation. There is a need for more user-friendly, flexible, and comprehensive segmentation software that offers an insightful overview of all steps involved in preparing automated segmentations. Here, we present Ais: a dedicated tomogram segmentation package that is geared towards both high performance and accessibility, available on GitHub. In this report, we demonstrate two common processing steps that can be greatly accelerated with Ais: particle picking for subtomogram averaging, and generating many-feature segmentations of cellular architecture based on in situ tomography data. Featuring comprehensive annotation, segmentation, and rendering functionality, as well as an open repository for trained models at aiscryoet.org, we hope that Ais will help accelerate research and dissemination of data involving cryoET.

    1. Structural Biology and Molecular Biophysics
    Mrityunjay Singh, Dinesh C Indurthi ... Shailendra Asthana
    Research Advance

    Agonists enhance receptor activity by providing net-favorable binding energy to active over resting conformations, with efficiency (η) linking binding energy to gating. Previously, we showed that in nicotinic receptors, η-values are grouped into five structural pairs, correlating efficacy and affinity within each class, uniting binding with allosteric activation (Indurthi and Auerbach, 2023). Here, we use molecular dynamics (MD) simulations to investigate the low-to-high affinity transition (L→H) at the Torpedo α−δ nicotinic acetylcholine receptor neurotransmitter site. Using four agonists spanning three η-classes, the simulations reveal the structural basis of the L→H transition where: the agonist pivots around its cationic center (‘flip’), loop C undergoes staged downward displacement (‘flop’), and a compact, stable high-affinity pocket forms (‘fix’). The η derived from binding energies calculated in silico matched exact values measured experimentally in vitro. Intermediate states of the orthosteric site during receptor activation are apparent only in simulations, but could potentially be observed experimentally via time-resolved structural studies.