Olfactory Channels Associated with the Drosophila Maxillary Palp Mediate Short- and Long-range Attraction

  1. Hany KM Dweck
  2. Shimaa AM Ebrahim
  3. Mohammed A Khallaf
  4. Christopher Koenig
  5. Abu Farhan
  6. Regina Stieber
  7. Jerrit Weißflog
  8. Aleš Svatoš
  9. Ewald Grosse-Wilde
  10. Markus Knaden  Is a corresponding author
  11. Bill S Hansson
  1. Max Planck Institute for Chemical Ecology, Germany
  2. Max Planck Institute for Chemical Ecology, United States

Abstract

The vinegar fly Drosophila melanogaster is equipped with two peripheral olfactory organs, antenna and maxillary palp. The antenna is involved in finding food, oviposition sites and mates. However, the functional significance of the maxillary palp remained unknown. Here, we screened the olfactory sensory neurons of the maxillary palp (MP-OSNs) using a large number of natural odor extracts to identify novel ligands for each MP-OSN type. We found that each type is the sole or the primary detector for a specific compound, and detects these compounds with high sensitivity. We next dissected the contribution of MP-OSNs to behaviors evoked by their key ligands and found that MP-OSNs mediate short- and long-range attraction. Furthermore, the organization, detection and olfactory receptor (Or) genes of MP-OSNs are conserved in the agricultural pest D. suzukii. The novel short and long-range attractants could potentially be used in integrated pest management (IPM) programs of this pest species.

Article and author information

Author details

  1. Hany KM Dweck

    Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
    Competing interests
    No competing interests declared.
  2. Shimaa AM Ebrahim

    Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
    Competing interests
    No competing interests declared.
  3. Mohammed A Khallaf

    Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
    Competing interests
    No competing interests declared.
  4. Christopher Koenig

    Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
    Competing interests
    No competing interests declared.
  5. Abu Farhan

    Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, New York, United States
    Competing interests
    No competing interests declared.
  6. Regina Stieber

    Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
    Competing interests
    No competing interests declared.
  7. Jerrit Weißflog

    Mass Spectrometry Group, Max Planck Institute for Chemical Ecology, Jena, Germany
    Competing interests
    No competing interests declared.
  8. Aleš Svatoš

    Mass Spectrometry Group, Max Planck Institute for Chemical Ecology, Jena, Germany
    Competing interests
    No competing interests declared.
  9. Ewald Grosse-Wilde

    Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
    Competing interests
    No competing interests declared.
  10. Markus Knaden

    Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
    For correspondence
    mknaden@ice.mpg.de
    Competing interests
    No competing interests declared.
  11. Bill S Hansson

    Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
    Competing interests
    Bill S Hansson, Vice President of the Max Planck Society, one of the three founding funders of eLife, and a member of eLife's Board of Directors.

Copyright

© 2016, Dweck et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,031
    views
  • 841
    downloads
  • 42
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hany KM Dweck
  2. Shimaa AM Ebrahim
  3. Mohammed A Khallaf
  4. Christopher Koenig
  5. Abu Farhan
  6. Regina Stieber
  7. Jerrit Weißflog
  8. Aleš Svatoš
  9. Ewald Grosse-Wilde
  10. Markus Knaden
  11. Bill S Hansson
(2016)
Olfactory Channels Associated with the Drosophila Maxillary Palp Mediate Short- and Long-range Attraction
eLife 5:e14925.
https://doi.org/10.7554/eLife.14925

Share this article

https://doi.org/10.7554/eLife.14925

Further reading

    1. Ecology
    2. Evolutionary Biology
    Rebecca D Tarvin, Jeffrey L Coleman ... Richard W Fitch
    Research Article

    Understanding the origins of novel, complex phenotypes is a major goal in evolutionary biology. Poison frogs of the family Dendrobatidae have evolved the novel ability to acquire alkaloids from their diet for chemical defense at least three times. However, taxon sampling for alkaloids has been biased towards colorful species, without similar attention paid to inconspicuous ones that are often assumed to be undefended. As a result, our understanding of how chemical defense evolved in this group is incomplete. Here, we provide new data showing that, in contrast to previous studies, species from each undefended poison frog clade have measurable yet low amounts of alkaloids. We confirm that undefended dendrobatids regularly consume mites and ants, which are known sources of alkaloids. Thus, our data suggest that diet is insufficient to explain the defended phenotype. Our data support the existence of a phenotypic intermediate between toxin consumption and sequestration — passive accumulation — that differs from sequestration in that it involves no derived forms of transport and storage mechanisms yet results in low levels of toxin accumulation. We discuss the concept of passive accumulation and its potential role in the origin of chemical defenses in poison frogs and other toxin-sequestering organisms. In light of ideas from pharmacokinetics, we incorporate new and old data from poison frogs into an evolutionary model that could help explain the origins of acquired chemical defenses in animals and provide insight into the molecular processes that govern the fate of ingested toxins.

    1. Ecology
    Mercury Shitindo
    Insight

    Tracking wild pigs with GPS devices reveals how their social interactions could influence the spread of disease, offering new strategies for protecting agriculture, wildlife, and human health.