Behavioral-state modulation of inhibition is context-dependent and cell type specific in mouse visual cortex

Abstract

Cortical responses to sensory stimuli are modulated by behavioral state. In the primary visual cortex (V1), visual responses of pyramidal neurons increase during locomotion. This response gain was suggested to be mediated through inhibitory neurons, resulting in the disinhibition of pyramidal neurons. Using in vivo two-photon calcium imaging in layers 2/3 and 4 in mouse V1, we reveal that locomotion increases the activity of vasoactive intestinal peptide (VIP), somatostatin (SST) and parvalbumin (PV)-positive interneurons during visual stimulation, challenging the disinhibition model. In darkness, while most VIP and PV neurons remained locomotion responsive, SST and excitatory neurons were largely non-responsive. Context-dependent locomotion responses were found in each cell type, with the highest proportion among SST neurons. These findings establish that modulation of neuronal activity by locomotion is context-dependent and contest the generality of a disinhibitory circuit for gain control of sensory responses by behavioral state.

Article and author information

Author details

  1. Janelle MP Pakan

    Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9384-8067
  2. Scott C Lowe

    Institute for Adaptive and Neural Computation, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Evelyn Dylda

    Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1883-4498
  4. Sander W Keemink

    Institute for Adaptive and Neural Computation, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Stephen P Currie

    Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Christopher A Coutts

    Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Nathalie LI Rochefort

    Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
    For correspondence
    n.rochefort@ed.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3498-6221

Funding

Wellcome (102857/Z/13/Z)

  • Nathalie LI Rochefort

EuroSpin Erasmus Mundus Program

  • Sander W Keemink

Royal Society (102857/Z/13/Z)

  • Nathalie LI Rochefort

European Commission (Marie Curie Actions (FP7), MC-CIG 631770)

  • Nathalie LI Rochefort

Patrick Wild Centre

  • Nathalie LI Rochefort

The Shirley Foundation

  • Nathalie LI Rochefort

RS MacDonald Charitable Trust (Seedcorn Grant 21)

  • Nathalie LI Rochefort

University Of Edinburgh (Graduate School of Life Sciences)

  • Evelyn Dylda

European Commission (Marie Curie Actions (FP7), IEF 624461)

  • Janelle MP Pakan

EPSRC Doctoral Training Centre in Neuroinformatics (EP/F500385/1 and BB/F529254/1)

  • Sander W Keemink

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were approved by the University of Edinburgh animal welfare committee, and were performed under a UK Home Office Project License (PPL No. 60/4570).

Copyright

© 2016, Pakan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,774
    views
  • 1,812
    downloads
  • 228
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Janelle MP Pakan
  2. Scott C Lowe
  3. Evelyn Dylda
  4. Sander W Keemink
  5. Stephen P Currie
  6. Christopher A Coutts
  7. Nathalie LI Rochefort
(2016)
Behavioral-state modulation of inhibition is context-dependent and cell type specific in mouse visual cortex
eLife 5:e14985.
https://doi.org/10.7554/eLife.14985

Share this article

https://doi.org/10.7554/eLife.14985

Further reading

    1. Neuroscience
    Qing Zhao, Yanjing Zhu ... Ning Xie
    Research Article

    Astrocytes derive from different lineages and play a critical role in neuropathic pain after spinal cord injury (SCI). Whether selectively eliminating these main origins of astrocytes in lumbar enlargement could attenuate SCI-induced neuropathic pain remains unclear. Through transgenic mice injected with an adeno-associated virus vector and diphtheria toxin, astrocytes in lumbar enlargement were lineage traced, targeted, and selectively eliminated. Pain-related behaviors were measured with an electronic von Frey apparatus and a cold/hot plate after SCI. RNA sequencing, bioinformatics analysis, molecular experiment, and immunohistochemistry were used to explore the potential mechanisms after astrocyte elimination. Lineage tracing revealed that the resident astrocytes but not ependymal cells were the main origins of astrocytes-induced neuropathic pain. SCI-induced mice to obtain significant pain symptoms and astrocyte activation in lumbar enlargement. Selective resident astrocyte elimination in lumbar enlargement could attenuate neuropathic pain and activate microglia. Interestingly, the type I interferons (IFNs) signal was significantly activated after astrocytes elimination, and the most activated Gene Ontology terms and pathways were associated with the type I IFNs signal which was mainly activated in microglia and further verified in vitro and in vivo. Furthermore, different concentrations of interferon and Stimulator of interferon genes (STING) agonist could activate the type I IFNs signal in microglia. These results elucidate that selectively eliminating resident astrocytes attenuated neuropathic pain associated with type I IFNs signal activation in microglia. Targeting type I IFNs signals is proven to be an effective strategy for neuropathic pain treatment after SCI.