Behavioral-state modulation of inhibition is context-dependent and cell type specific in mouse visual cortex

Abstract

Cortical responses to sensory stimuli are modulated by behavioral state. In the primary visual cortex (V1), visual responses of pyramidal neurons increase during locomotion. This response gain was suggested to be mediated through inhibitory neurons, resulting in the disinhibition of pyramidal neurons. Using in vivo two-photon calcium imaging in layers 2/3 and 4 in mouse V1, we reveal that locomotion increases the activity of vasoactive intestinal peptide (VIP), somatostatin (SST) and parvalbumin (PV)-positive interneurons during visual stimulation, challenging the disinhibition model. In darkness, while most VIP and PV neurons remained locomotion responsive, SST and excitatory neurons were largely non-responsive. Context-dependent locomotion responses were found in each cell type, with the highest proportion among SST neurons. These findings establish that modulation of neuronal activity by locomotion is context-dependent and contest the generality of a disinhibitory circuit for gain control of sensory responses by behavioral state.

Article and author information

Author details

  1. Janelle MP Pakan

    Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9384-8067
  2. Scott C Lowe

    Institute for Adaptive and Neural Computation, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Evelyn Dylda

    Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1883-4498
  4. Sander W Keemink

    Institute for Adaptive and Neural Computation, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Stephen P Currie

    Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Christopher A Coutts

    Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Nathalie L Rochefort

    Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
    For correspondence
    n.rochefort@ed.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3498-6221

Funding

Wellcome (102857/Z/13/Z)

  • Nathalie LI Rochefort

EuroSpin Erasmus Mundus Program

  • Sander W Keemink

Royal Society (102857/Z/13/Z)

  • Nathalie LI Rochefort

European Commission (Marie Curie Actions (FP7), MC-CIG 631770)

  • Nathalie LI Rochefort

Patrick Wild Centre

  • Nathalie LI Rochefort

The Shirley Foundation

  • Nathalie LI Rochefort

RS MacDonald Charitable Trust (Seedcorn Grant 21)

  • Nathalie LI Rochefort

University Of Edinburgh (Graduate School of Life Sciences)

  • Evelyn Dylda

European Commission (Marie Curie Actions (FP7), IEF 624461)

  • Janelle MP Pakan

EPSRC Doctoral Training Centre in Neuroinformatics (EP/F500385/1 and BB/F529254/1)

  • Sander W Keemink

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were approved by the University of Edinburgh animal welfare committee, and were performed under a UK Home Office Project License (PPL No. 60/4570).

Copyright

© 2016, Pakan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,811
    views
  • 1,816
    downloads
  • 230
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Janelle MP Pakan
  2. Scott C Lowe
  3. Evelyn Dylda
  4. Sander W Keemink
  5. Stephen P Currie
  6. Christopher A Coutts
  7. Nathalie L Rochefort
(2016)
Behavioral-state modulation of inhibition is context-dependent and cell type specific in mouse visual cortex
eLife 5:e14985.
https://doi.org/10.7554/eLife.14985

Share this article

https://doi.org/10.7554/eLife.14985

Further reading

    1. Cell Biology
    2. Neuroscience
    Jun Sun, Francisca Rojo-Cortes ... Alicia Hidalgo
    Research Article

    Experience shapes the brain as neural circuits can be modified by neural stimulation or the lack of it. The molecular mechanisms underlying structural circuit plasticity and how plasticity modifies behaviour are poorly understood. Subjective experience requires dopamine, a neuromodulator that assigns a value to stimuli, and it also controls behaviour, including locomotion, learning, and memory. In Drosophila, Toll receptors are ideally placed to translate experience into structural brain change. Toll-6 is expressed in dopaminergic neurons (DANs), raising the intriguing possibility that Toll-6 could regulate structural plasticity in dopaminergic circuits. Drosophila neurotrophin-2 (DNT-2) is the ligand for Toll-6 and Kek-6, but whether it is required for circuit structural plasticity was unknown. Here, we show that DNT-2-expressing neurons connect with DANs, and they modulate each other. Loss of function for DNT-2 or its receptors Toll-6 and kinase-less Trk-like kek-6 caused DAN and synapse loss, impaired dendrite growth and connectivity, decreased synaptic sites, and caused locomotion deficits. In contrast, over-expressed DNT-2 increased DAN cell number, dendrite complexity, and promoted synaptogenesis. Neuronal activity modified DNT-2, increased synaptogenesis in DNT-2-positive neurons and DANs, and over-expression of DNT-2 did too. Altering the levels of DNT-2 or Toll-6 also modified dopamine-dependent behaviours, including locomotion and long-term memory. To conclude, a feedback loop involving dopamine and DNT-2 highlighted the circuits engaged, and DNT-2 with Toll-6 and Kek-6 induced structural plasticity in this circuit modifying brain function and behaviour.