Sex steroids regulate skin pigmentation through nonclassical membrane-bound receptors

  1. Christopher A Natale
  2. Elizabeth K Duperret
  3. Junqian Zhang
  4. Rochelle Sadeghi
  5. Ankit Dahal
  6. Kevin Tyler O'Brien
  7. Rosa Cookson
  8. Jeffrey D Winkler
  9. Todd W Ridky  Is a corresponding author
  1. Perelman School of Medicine, University of Pennsylvania, United States
  2. University of Pennsylvania, United States

Abstract

The association between pregnancy and altered cutaneous pigmentation has been documented for over two millennia, suggesting that sex hormones play a role in regulating epidermal melanocyte (MC) homeostasis. Here we show that physiologic estrogen (17β-estradiol) and progesterone reciprocally regulate melanin synthesis. This is intriguing given that we also show that normal primary human MCs lack classical estrogen or progesterone receptors (ER or PR). Utilizing both genetic and pharmacologic approaches, we establish that sex steroid effects on human pigment synthesis are mediated by the membrane-bound, steroid hormone receptors G protein-coupled estrogen receptor (GPER), and progestin and adipoQ receptor 7 (PAQR7). Activity of these receptors was activated or inhibited by synthetic estrogen or progesterone analogs that do not bind to ER or PR. As safe and effective treatment options for skin pigmentation disorders are limited, these specific GPER and PAQR7 ligands may represent a novel class of therapeutics.

Article and author information

Author details

  1. Christopher A Natale

    Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    Christopher A Natale, Listed as an inventor on patent applications held by the University of Pennsylvania for the use of topical estrogen and progesterone derivatives for modulating skin pigmentation.
  2. Elizabeth K Duperret

    Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  3. Junqian Zhang

    Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  4. Rochelle Sadeghi

    Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  5. Ankit Dahal

    Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  6. Kevin Tyler O'Brien

    Department of Chemistry, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  7. Rosa Cookson

    Department of Chemistry, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  8. Jeffrey D Winkler

    Department of Chemistry, University of Pennsylvania, Philadelphia, United States
    Competing interests
    Jeffrey D Winkler, Listed as an inventor on patent applications held by the University of Pennsylvania for the use of topical estrogen and progesterone derivatives for modulating skin pigmentation.
  9. Todd W Ridky

    Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    For correspondence
    ridky@mail.med.upenn.edu
    Competing interests
    Todd W Ridky, Listed as an inventor on patent applications held by the University of Pennsylvania for the use of topical estrogen and progesterone derivatives for modulating skin pigmentation.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocol (#803381) of the University of Pennsylvania.

Reviewing Editor

  1. Marianne E Bronner, California Institute of Technology, United States

Publication history

  1. Received: February 9, 2016
  2. Accepted: April 11, 2016
  3. Accepted Manuscript published: April 26, 2016 (version 1)
  4. Version of Record published: May 11, 2016 (version 2)

Copyright

© 2016, Natale et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,366
    Page views
  • 987
    Downloads
  • 59
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Christopher A Natale
  2. Elizabeth K Duperret
  3. Junqian Zhang
  4. Rochelle Sadeghi
  5. Ankit Dahal
  6. Kevin Tyler O'Brien
  7. Rosa Cookson
  8. Jeffrey D Winkler
  9. Todd W Ridky
(2016)
Sex steroids regulate skin pigmentation through nonclassical membrane-bound receptors
eLife 5:e15104.
https://doi.org/10.7554/eLife.15104

Further reading

    1. Cancer Biology
    2. Cell Biology
    Qiangqiang Liu et al.
    Research Article Updated

    DBC1 has been characterized as a key regulator of physiological and pathophysiological activities, such as DNA damage, senescence, and tumorigenesis. However, the mechanism by which the functional stability of DBC1 is regulated has yet to be elucidated. Here, we report that the ubiquitination-mediated degradation of DBC1 is regulated by the E3 ubiquitin ligase SIAH2 and deubiquitinase OTUD5 under hypoxic stress. Mechanistically, hypoxia promoted DBC1 to interact with SIAH2 but not OTUD5, resulting in the ubiquitination and subsequent degradation of DBC1 through the ubiquitin–proteasome pathway. SIAH2 knockout inhibited tumor cell proliferation and migration, which could be rescued by double knockout of SIAH2/CCAR2. Human tissue microarray analysis further revealed that the SIAH2/DBC1 axis was responsible for tumor progression under hypoxic stress. These findings define a key role of the hypoxia-mediated SIAH2-DBC1 pathway in the progression of human breast cancer and provide novel insights into the metastatic mechanism of breast cancer.

    1. Cell Biology
    Gina M LoMastro et al.
    Research Article

    Multiciliated cells (MCCs) are terminally differentiated epithelia that assemble multiple motile cilia used to promote fluid flow. To template these cilia, MCCs dramatically expand their centriole content during a process known as centriole amplification. In cycling cells, the master regulator of centriole assembly Polo-like kinase 4 (PLK4) is essential for centriole duplication; however recent work has questioned the role of PLK4 in centriole assembly in MCCs. To address this discrepancy, we created genetically engineered mouse models and demonstrated that both PLK4 protein and kinase activity are critical for centriole amplification in MCCs. Tracheal epithelial cells that fail centriole amplification accumulate large assemblies of centriole proteins and do not undergo apical surface area expansion. These results show that the initial stages of centriole assembly are conserved between cycling cells and MCCs and suggest that centriole amplification and surface area expansion are coordinated events.