1. Cell Biology
Download icon

Sex steroids regulate skin pigmentation through nonclassical membrane-bound receptors

  1. Christopher A Natale
  2. Elizabeth K Duperret
  3. Junqian Zhang
  4. Rochelle Sadeghi
  5. Ankit Dahal
  6. Kevin Tyler O'Brien
  7. Rosa Cookson
  8. Jeffrey D Winkler
  9. Todd W Ridky  Is a corresponding author
  1. Perelman School of Medicine, University of Pennsylvania, United States
  2. University of Pennsylvania, United States
Research Article
  • Cited 48
  • Views 4,887
  • Annotations
Cite this article as: eLife 2016;5:e15104 doi: 10.7554/eLife.15104

Abstract

The association between pregnancy and altered cutaneous pigmentation has been documented for over two millennia, suggesting that sex hormones play a role in regulating epidermal melanocyte (MC) homeostasis. Here we show that physiologic estrogen (17β-estradiol) and progesterone reciprocally regulate melanin synthesis. This is intriguing given that we also show that normal primary human MCs lack classical estrogen or progesterone receptors (ER or PR). Utilizing both genetic and pharmacologic approaches, we establish that sex steroid effects on human pigment synthesis are mediated by the membrane-bound, steroid hormone receptors G protein-coupled estrogen receptor (GPER), and progestin and adipoQ receptor 7 (PAQR7). Activity of these receptors was activated or inhibited by synthetic estrogen or progesterone analogs that do not bind to ER or PR. As safe and effective treatment options for skin pigmentation disorders are limited, these specific GPER and PAQR7 ligands may represent a novel class of therapeutics.

Article and author information

Author details

  1. Christopher A Natale

    Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    Christopher A Natale, Listed as an inventor on patent applications held by the University of Pennsylvania for the use of topical estrogen and progesterone derivatives for modulating skin pigmentation.
  2. Elizabeth K Duperret

    Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  3. Junqian Zhang

    Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  4. Rochelle Sadeghi

    Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  5. Ankit Dahal

    Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  6. Kevin Tyler O'Brien

    Department of Chemistry, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  7. Rosa Cookson

    Department of Chemistry, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  8. Jeffrey D Winkler

    Department of Chemistry, University of Pennsylvania, Philadelphia, United States
    Competing interests
    Jeffrey D Winkler, Listed as an inventor on patent applications held by the University of Pennsylvania for the use of topical estrogen and progesterone derivatives for modulating skin pigmentation.
  9. Todd W Ridky

    Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    For correspondence
    ridky@mail.med.upenn.edu
    Competing interests
    Todd W Ridky, Listed as an inventor on patent applications held by the University of Pennsylvania for the use of topical estrogen and progesterone derivatives for modulating skin pigmentation.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocol (#803381) of the University of Pennsylvania.

Reviewing Editor

  1. Marianne E Bronner, California Institute of Technology, United States

Publication history

  1. Received: February 9, 2016
  2. Accepted: April 11, 2016
  3. Accepted Manuscript published: April 26, 2016 (version 1)
  4. Version of Record published: May 11, 2016 (version 2)

Copyright

© 2016, Natale et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,887
    Page views
  • 949
    Downloads
  • 48
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Neuroscience
    Rene Solano Fonseca et al.
    Research Article Updated

    Concussion is associated with a myriad of deleterious immediate and long-term consequences. Yet the molecular mechanisms and genetic targets promoting the selective vulnerability of different neural subtypes to dysfunction and degeneration remain unclear. Translating experimental models of blunt force trauma in C. elegans to concussion in mice, we identify a conserved neuroprotective mechanism in which reduction of mitochondrial electron flux through complex IV suppresses trauma-induced degeneration of the highly vulnerable dopaminergic neurons. Reducing cytochrome C oxidase function elevates mitochondrial-derived reactive oxygen species, which signal through the cytosolic hypoxia inducing transcription factor, Hif1a, to promote hyperphosphorylation and inactivation of the pyruvate dehydrogenase, PDHE1α. This critical enzyme initiates the Warburg shunt, which drives energetic reallocation from mitochondrial respiration to astrocyte-mediated glycolysis in a neuroprotective manner. These studies demonstrate a conserved process in which glycolytic preconditioning suppresses Parkinson-like hypersensitivity of dopaminergic neurons to trauma-induced degeneration via redox signaling and the Warburg effect.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Zdravka Daneva et al.
    Research Article Updated

    Pannexin 1 (Panx1), an ATP-efflux pathway, has been linked with inflammation in pulmonary capillaries. However, the physiological roles of endothelial Panx1 in the pulmonary vasculature are unknown. Endothelial transient receptor potential vanilloid 4 (TRPV4) channels lower pulmonary artery (PA) contractility and exogenous ATP activates endothelial TRPV4 channels. We hypothesized that endothelial Panx1–ATP–TRPV4 channel signaling promotes vasodilation and lowers pulmonary arterial pressure (PAP). Endothelial, but not smooth muscle, knockout of Panx1 increased PA contractility and raised PAP in mice. Flow/shear stress increased ATP efflux through endothelial Panx1 in PAs. Panx1-effluxed extracellular ATP signaled through purinergic P2Y2 receptor (P2Y2R) to activate protein kinase Cα (PKCα), which in turn activated endothelial TRPV4 channels. Finally, caveolin-1 provided a signaling scaffold for endothelial Panx1, P2Y2R, PKCα, and TRPV4 channels in PAs, promoting their spatial proximity and enabling signaling interactions. These results indicate that endothelial Panx1–P2Y2R–TRPV4 channel signaling, facilitated by caveolin-1, reduces PA contractility and lowers PAP in mice.