Synaptic pruning in the female hippocampus is triggered at puberty by extrasynaptic GABAA receptors on dendritic spines

  1. Sonia Afroz
  2. Julie Parato
  3. Hui Shen
  4. Sheryl Sue Smith  Is a corresponding author
  1. University of California, Riverside, United States
  2. SUNY Downstate Medical Center, United States
  3. Tianjin Medical University, China

Abstract

Adolescent synaptic pruning is thought to enable optimal cognition because it is disrupted in certain neuropathologies, yet the initiator of this process is unknown. One factor not yet considered is the α4βδ GABAA receptor (GABAR), an extrasynaptic inhibitory receptor which first emerges on dendritic spines at puberty in female mice. Here we show that α4βδ GABARs trigger adolescent pruning. Spine density of CA1 hippocampal pyramidal cells decreased by half post-pubertally in female wild-type but not α4 KO mice. This effect was associated with decreased expression of kalirin-7 (Kal7), a spine protein which controls actin cytoskeleton remodeling. Kal7 decreased at puberty as a result of reduced NMDAR activation due to α4βδ-mediated inhibition. In the absence of this inhibition, Kal7 expression was unchanged at puberty. In the unpruned condition, spatial re-learning was impaired. These data suggest that pubertal pruning requires α4βδ GABARs. In their absence, pruning is prevented and cognition is not optimal.

Article and author information

Author details

  1. Sonia Afroz

    Department of Biomedical Sciences, University of California, Riverside, Riverside, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Julie Parato

    Department of Physiology and Pharmacology, SUNY Downstate Medical Center, Brooklyn, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Hui Shen

    School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Sheryl Sue Smith

    Department of Physiology and Pharmacology, SUNY Downstate Medical Center, Brooklyn, United States
    For correspondence
    sheryl.smith@downstate.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Mary B Kennedy, California Institute of Technology, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocol (#13-10374) of SUNY Downstate Medical Center (Animal Welfare Assurance Number: A3260-01). All perfusions were performed under urethane anesthesia, and every effort was made to minimize suffering.

Version history

  1. Received: February 9, 2016
  2. Accepted: April 29, 2016
  3. Accepted Manuscript published: May 2, 2016 (version 1)
  4. Version of Record published: May 18, 2016 (version 2)

Copyright

© 2016, Afroz et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,303
    views
  • 968
    downloads
  • 48
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sonia Afroz
  2. Julie Parato
  3. Hui Shen
  4. Sheryl Sue Smith
(2016)
Synaptic pruning in the female hippocampus is triggered at puberty by extrasynaptic GABAA receptors on dendritic spines
eLife 5:e15106.
https://doi.org/10.7554/eLife.15106

Share this article

https://doi.org/10.7554/eLife.15106

Further reading

    1. Cell Biology
    2. Developmental Biology
    Filip Knop, Apolena Zounarova ... Marie Macůrková
    Research Article

    During Caenorhabditis elegans development, multiple cells migrate long distances or extend processes to reach their final position and/or attain proper shape. The Wnt signalling pathway stands out as one of the major coordinators of cell migration or cell outgrowth along the anterior-posterior body axis. The outcome of Wnt signalling is fine-tuned by various mechanisms including endocytosis. In this study, we show that SEL-5, the C. elegans orthologue of mammalian AP2-associated kinase AAK1, acts together with the retromer complex as a positive regulator of EGL-20/Wnt signalling during the migration of QL neuroblast daughter cells. At the same time, SEL-5 in cooperation with the retromer complex is also required during excretory canal cell outgrowth. Importantly, SEL-5 kinase activity is not required for its role in neuronal migration or excretory cell outgrowth, and neither of these processes is dependent on DPY-23/AP2M1 phosphorylation. We further establish that the Wnt proteins CWN-1 and CWN-2 together with the Frizzled receptor CFZ-2 positively regulate excretory cell outgrowth, while LIN-44/Wnt and LIN-17/Frizzled together generate a stop signal inhibiting its extension.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Ya-Juan Wang, Xiao-Jing Di ... Ting-Wei Mu
    Research Article Updated

    Protein homeostasis (proteostasis) deficiency is an important contributing factor to neurological and metabolic diseases. However, how the proteostasis network orchestrates the folding and assembly of multi-subunit membrane proteins is poorly understood. Previous proteomics studies identified Hsp47 (Gene: SERPINH1), a heat shock protein in the endoplasmic reticulum lumen, as the most enriched interacting chaperone for gamma-aminobutyric acid type A (GABAA) receptors. Here, we show that Hsp47 enhances the functional surface expression of GABAA receptors in rat neurons and human HEK293T cells. Furthermore, molecular mechanism study demonstrates that Hsp47 acts after BiP (Gene: HSPA5) and preferentially binds the folded conformation of GABAA receptors without inducing the unfolded protein response in HEK293T cells. Therefore, Hsp47 promotes the subunit-subunit interaction, the receptor assembly process, and the anterograde trafficking of GABAA receptors. Overexpressing Hsp47 is sufficient to correct the surface expression and function of epilepsy-associated GABAA receptor variants in HEK293T cells. Hsp47 also promotes the surface trafficking of other Cys-loop receptors, including nicotinic acetylcholine receptors and serotonin type 3 receptors in HEK293T cells. Therefore, in addition to its known function as a collagen chaperone, this work establishes that Hsp47 plays a critical and general role in the maturation of multi-subunit Cys-loop neuroreceptors.