Pivotal role for skin trans-endothelial radio-resistant anti-inflammatory macrophages in tissue repair

  1. Olga Barreiro
  2. Danay Cibrian
  3. Cristina Clemente
  4. David Alvarez
  5. Vanessa Moreno
  6. Inigo Valiente
  7. Antonio Bernad
  8. Dietmar Vestweber
  9. Alicia G Arroyo
  10. Pilar Martín
  11. Ulrich von Andrian
  12. Francisco Sánchez Madrid  Is a corresponding author
  1. Harvard Medical School, United States
  2. Centro Nacional de Investigaciones Cardiovasculares, Spain
  3. Max Planck Institute of Molecular Biomedicine, Germany

Abstract

Heterogeneity and functional specialization among skin-resident macrophages are incompletely understood. In this study, we describe a novel subset of murine dermal perivascular macrophages that extend protrusions across the endothelial junctions in steady-state and capture blood-borne macromolecules. Unlike other skin-resident macrophages that are reconstituted by bone marrow-derived progenitors after a genotoxic insult, these cells are replenished by an extramedullary radio-resistant and UV-sensitive Bmi1+ progenitor. Furthermore, they possess a distinctive anti-inflammatory transcriptional profile, which cannot be polarized under inflammatory conditions, and are involved in repair and remodeling functions for which other skin-resident macrophages appear dispensable. Based on all their properties, we define these macrophages as Skin Transendothelial Radio-resistant Anti-inflammatory Macrophages (STREAM) and postulate that their preservation is important for skin homeostasis.

Article and author information

Author details

  1. Olga Barreiro

    Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Danay Cibrian

    Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  3. Cristina Clemente

    Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  4. David Alvarez

    Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Vanessa Moreno

    Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  6. Inigo Valiente

    Department of Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  7. Antonio Bernad

    Department of Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  8. Dietmar Vestweber

    Max Planck Institute of Molecular Biomedicine, Münster, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Alicia G Arroyo

    Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  10. Pilar Martín

    Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  11. Ulrich von Andrian

    Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Francisco Sánchez Madrid

    Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
    For correspondence
    fsmadrid@salud.madrid.org
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: Animal studies were approved by the local ethics committee and by the Division of Animal Protection of Comunidad de Madrid (approved protocols PROEX 159/15 and 160/15). All animal procedures conformed to EU Directive 2010/63EU and Recommendation 2007/526/EC regarding the protection of animals used for experimental and other scientific purposes, enforced in Spanish law under Real Decreto 1201/2005

Copyright

© 2016, Barreiro et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,388
    views
  • 776
    downloads
  • 39
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Olga Barreiro
  2. Danay Cibrian
  3. Cristina Clemente
  4. David Alvarez
  5. Vanessa Moreno
  6. Inigo Valiente
  7. Antonio Bernad
  8. Dietmar Vestweber
  9. Alicia G Arroyo
  10. Pilar Martín
  11. Ulrich von Andrian
  12. Francisco Sánchez Madrid
(2016)
Pivotal role for skin trans-endothelial radio-resistant anti-inflammatory macrophages in tissue repair
eLife 5:e15251.
https://doi.org/10.7554/eLife.15251

Share this article

https://doi.org/10.7554/eLife.15251

Further reading

    1. Immunology and Inflammation
    Josep Garnica, Patricia Sole ... Pere Santamaria
    Research Article

    Chronic antigenic stimulation can trigger the formation of interleukin 10 (IL-10)-producing T-regulatory type 1 (TR1) cells in vivo. We have recently shown that murine T-follicular helper (TFH) cells are precursors of TR1 cells and that the TFH-to-TR1 cell transdifferentiation process is characterized by the progressive loss and acquisition of opposing transcription factor gene expression programs that evolve through at least one transitional cell stage. Here, we use a broad range of bulk and single-cell transcriptional and epigenetic tools to investigate the epigenetic underpinnings of this process. At the single-cell level, the TFH-to-TR1 cell transition is accompanied by both, downregulation of TFH cell-specific gene expression due to loss of chromatin accessibility, and upregulation of TR1 cell-specific genes linked to chromatin regions that remain accessible throughout the transdifferentiation process, with minimal generation of new open chromatin regions. By interrogating the epigenetic status of accessible TR1 genes on purified TFH and conventional T-cells, we find that most of these genes, including Il10, are already poised for expression at the TFH cell stage. Whereas these genes are closed and hypermethylated in Tconv cells, they are accessible, hypomethylated, and enriched for H3K27ac-marked and hypomethylated active enhancers in TFH cells. These enhancers are enriched for binding sites for the TFH and TR1-associated transcription factors TOX-2, IRF4, and c-MAF. Together, these data suggest that the TR1 gene expression program is genetically imprinted at the TFH cell stage.

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Stephanie Guillet, Tomi Lazarov ... Frédéric Geissmann
    Research Article

    Systemic lupus erythematosus (SLE) is an autoimmune disease, the pathophysiology and genetic basis of which are incompletely understood. Using a forward genetic screen in multiplex families with SLE, we identified an association between SLE and compound heterozygous deleterious variants in the non-receptor tyrosine kinases (NRTKs) ACK1 and BRK. Experimental blockade of ACK1 or BRK increased circulating autoantibodies in vivo in mice and exacerbated glomerular IgG deposits in an SLE mouse model. Mechanistically, NRTKs regulate activation, migration, and proliferation of immune cells. We found that the patients’ ACK1 and BRK variants impair efferocytosis, the MERTK-mediated anti-inflammatory response to apoptotic cells, in human induced pluripotent stem cell (hiPSC)-derived macrophages, which may contribute to SLE pathogenesis. Overall, our data suggest that ACK1 and BRK deficiencies are associated with human SLE and impair efferocytosis in macrophages.