Pivotal role for skin trans-endothelial radio-resistant anti-inflammatory macrophages in tissue repair

  1. Olga Barreiro
  2. Danay Cibrian
  3. Cristina Clemente
  4. David Alvarez
  5. Vanessa Moreno
  6. Inigo Valiente
  7. Antonio Bernad
  8. Dietmar Vestweber
  9. Alicia G Arroyo
  10. Pilar Martín
  11. Ulrich von Andrian
  12. Francisco Sánchez Madrid  Is a corresponding author
  1. Harvard Medical School, United States
  2. Centro Nacional de Investigaciones Cardiovasculares, Spain
  3. Max Planck Institute of Molecular Biomedicine, Germany

Abstract

Heterogeneity and functional specialization among skin-resident macrophages are incompletely understood. In this study, we describe a novel subset of murine dermal perivascular macrophages that extend protrusions across the endothelial junctions in steady-state and capture blood-borne macromolecules. Unlike other skin-resident macrophages that are reconstituted by bone marrow-derived progenitors after a genotoxic insult, these cells are replenished by an extramedullary radio-resistant and UV-sensitive Bmi1+ progenitor. Furthermore, they possess a distinctive anti-inflammatory transcriptional profile, which cannot be polarized under inflammatory conditions, and are involved in repair and remodeling functions for which other skin-resident macrophages appear dispensable. Based on all their properties, we define these macrophages as Skin Transendothelial Radio-resistant Anti-inflammatory Macrophages (STREAM) and postulate that their preservation is important for skin homeostasis.

Article and author information

Author details

  1. Olga Barreiro

    Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Danay Cibrian

    Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  3. Cristina Clemente

    Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  4. David Alvarez

    Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Vanessa Moreno

    Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  6. Inigo Valiente

    Department of Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  7. Antonio Bernad

    Department of Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  8. Dietmar Vestweber

    Max Planck Institute of Molecular Biomedicine, Münster, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Alicia G Arroyo

    Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  10. Pilar Martín

    Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  11. Ulrich von Andrian

    Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Francisco Sánchez Madrid

    Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
    For correspondence
    fsmadrid@salud.madrid.org
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Satyajit Rath, National Institute of Immunology, India

Ethics

Animal experimentation: Animal studies were approved by the local ethics committee and by the Division of Animal Protection of Comunidad de Madrid (approved protocols PROEX 159/15 and 160/15). All animal procedures conformed to EU Directive 2010/63EU and Recommendation 2007/526/EC regarding the protection of animals used for experimental and other scientific purposes, enforced in Spanish law under Real Decreto 1201/2005

Version history

  1. Received: February 16, 2016
  2. Accepted: June 13, 2016
  3. Accepted Manuscript published: June 15, 2016 (version 1)
  4. Accepted Manuscript updated: June 17, 2016 (version 2)
  5. Version of Record published: July 26, 2016 (version 3)

Copyright

© 2016, Barreiro et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,295
    views
  • 767
    downloads
  • 34
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Olga Barreiro
  2. Danay Cibrian
  3. Cristina Clemente
  4. David Alvarez
  5. Vanessa Moreno
  6. Inigo Valiente
  7. Antonio Bernad
  8. Dietmar Vestweber
  9. Alicia G Arroyo
  10. Pilar Martín
  11. Ulrich von Andrian
  12. Francisco Sánchez Madrid
(2016)
Pivotal role for skin trans-endothelial radio-resistant anti-inflammatory macrophages in tissue repair
eLife 5:e15251.
https://doi.org/10.7554/eLife.15251

Share this article

https://doi.org/10.7554/eLife.15251

Further reading

    1. Evolutionary Biology
    2. Immunology and Inflammation
    Mark S Lee, Peter J Tuohy ... Michael S Kuhns
    Research Advance

    CD4+ T cell activation is driven by five-module receptor complexes. The T cell receptor (TCR) is the receptor module that binds composite surfaces of peptide antigens embedded within MHCII molecules (pMHCII). It associates with three signaling modules (CD3γε, CD3δε, and CD3ζζ) to form TCR-CD3 complexes. CD4 is the coreceptor module. It reciprocally associates with TCR-CD3-pMHCII assemblies on the outside of a CD4+ T cells and with the Src kinase, LCK, on the inside. Previously, we reported that the CD4 transmembrane GGXXG and cytoplasmic juxtamembrane (C/F)CV+C motifs found in eutherian (placental mammal) CD4 have constituent residues that evolved under purifying selection (Lee et al., 2022). Expressing mutants of these motifs together in T cell hybridomas increased CD4-LCK association but reduced CD3ζ, ZAP70, and PLCγ1 phosphorylation levels, as well as IL-2 production, in response to agonist pMHCII. Because these mutants preferentially localized CD4-LCK pairs to non-raft membrane fractions, one explanation for our results was that they impaired proximal signaling by sequestering LCK away from TCR-CD3. An alternative hypothesis is that the mutations directly impacted signaling because the motifs normally play an LCK-independent role in signaling. The goal of this study was to discriminate between these possibilities. Using T cell hybridomas, our results indicate that: intracellular CD4-LCK interactions are not necessary for pMHCII-specific signal initiation; the GGXXG and (C/F)CV+C motifs are key determinants of CD4-mediated pMHCII-specific signal amplification; the GGXXG and (C/F)CV+C motifs exert their functions independently of direct CD4-LCK association. These data provide a mechanistic explanation for why residues within these motifs are under purifying selection in jawed vertebrates. The results are also important to consider for biomimetic engineering of synthetic receptors.

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Jean-David Larouche, Céline M Laumont ... Claude Perreault
    Research Article

    Transposable elements (TEs) are repetitive sequences representing ~45% of the human and mouse genomes and are highly expressed by medullary thymic epithelial cells (mTECs). In this study, we investigated the role of TEs on T-cell development in the thymus. We performed multiomic analyses of TEs in human and mouse thymic cells to elucidate their role in T-cell development. We report that TE expression in the human thymus is high and shows extensive age- and cell lineage-related variations. TE expression correlates with multiple transcription factors in all cell types of the human thymus. Two cell types express particularly broad TE repertoires: mTECs and plasmacytoid dendritic cells (pDCs). In mTECs, transcriptomic data suggest that TEs interact with transcription factors essential for mTEC development and function (e.g., PAX1 and REL), and immunopeptidomic data showed that TEs generate MHC-I-associated peptides implicated in thymocyte education. Notably, AIRE, FEZF2, and CHD4 regulate small yet non-redundant sets of TEs in murine mTECs. Human thymic pDCs homogenously express large numbers of TEs that likely form dsRNA, which can activate innate immune receptors, potentially explaining why thymic pDCs constitutively secrete IFN ɑ/β. This study highlights the diversity of interactions between TEs and the adaptive immune system. TEs are genetic parasites, and the two thymic cell types most affected by TEs (mTEcs and pDCs) are essential to establishing central T-cell tolerance. Therefore, we propose that orchestrating TE expression in thymic cells is critical to prevent autoimmunity in vertebrates.