Testing the Münch hypothesis of long distance phloem transport in plants

  1. Michael Knoblauch  Is a corresponding author
  2. Jan Knoblauch
  3. Daniel L Mullendore
  4. Jessica A Savage
  5. Benjamin A Babst
  6. Sierra D Beecher
  7. Adam C Dodgen
  8. Kaare H Jensen
  9. Noel Michele Holbrook
  1. Washington State University, United States
  2. Harvard University, United States
  3. University of Arkansas at Monticello, United States
  4. Technical University of Denmark, Denmark

Abstract

Long distance transport in plants occurs in sieve tubes of the phloem. The pressure flow hypothesis introduced by Ernst Münch in 1930 describes a mechanism of osmotically generated pressure differentials that are supposed to drive the movement of sugars and other solutes in the phloem, but this hypothesis has long faced major challenges. The key issue is whether the conductance of sieve tubes, including sieve plate pores, is sufficient to allow pressure flow. We show that with increasing distance between source and sink, sieve tube conductivity and turgor increases dramatically in Ipomoea nil. Our results provide strong support for the Münch hypothesis, while providing new tools for the investigation of one of the least understood plant tissues.

Article and author information

Author details

  1. Michael Knoblauch

    School of Biological Sciences, Washington State University, Pullman, United States
    For correspondence
    knoblauch@wsu.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Jan Knoblauch

    School of Biological Sciences, Washington State University, Pullman, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Daniel L Mullendore

    School of Biological Sciences, Washington State University, Pullman, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jessica A Savage

    Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Benjamin A Babst

    School of Forestry and Natural Resources, University of Arkansas at Monticello, Monticello, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Sierra D Beecher

    School of Biological Sciences, Washington State University, Pullman, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Adam C Dodgen

    School of Biological Sciences, Washington State University, Pullman, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Kaare H Jensen

    Department of Physics, Technical University of Denmark, Lyngby, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  9. Noel Michele Holbrook

    Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2016, Knoblauch et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,702
    views
  • 1,621
    downloads
  • 139
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michael Knoblauch
  2. Jan Knoblauch
  3. Daniel L Mullendore
  4. Jessica A Savage
  5. Benjamin A Babst
  6. Sierra D Beecher
  7. Adam C Dodgen
  8. Kaare H Jensen
  9. Noel Michele Holbrook
(2016)
Testing the Münch hypothesis of long distance phloem transport in plants
eLife 5:e15341.
https://doi.org/10.7554/eLife.15341

Share this article

https://doi.org/10.7554/eLife.15341

Further reading

    1. Microbiology and Infectious Disease
    2. Plant Biology
    Nyasha Charura, Ernesto Llamas ... Alga Zuccaro
    Research Article

    Programmed cell death occurring during plant development (dPCD) is a fundamental process integral for plant growth and reproduction. Here, we investigate the connection between developmentally controlled PCD and fungal accommodation in Arabidopsis thaliana roots, focusing on the root cap-specific transcription factor ANAC033/SOMBRERO (SMB) and the senescence-associated nuclease BFN1. Mutations of both dPCD regulators increase colonization by the beneficial fungus Serendipita indica, primarily in the differentiation zone. smb-3 mutants additionally exhibit hypercolonization around the meristematic zone and a delay of S. indica-induced root-growth promotion. This demonstrates that root cap dPCD and rapid post-mortem clearance of cellular corpses represent a physical defense mechanism restricting microbial invasion of the root. Additionally, reporter lines and transcriptional analysis revealed that BFN1 expression is downregulated during S. indica colonization in mature root epidermal cells, suggesting a transcriptional control mechanism that facilitates the accommodation of beneficial microbes in the roots.

    1. Cell Biology
    2. Plant Biology
    Masanori Izumi, Sakuya Nakamura ... Shinya Hagihara
    Research Article

    Plants distribute many nutrients to chloroplasts during leaf development and maturation. When leaves senesce or experience sugar starvation, the autophagy machinery degrades chloroplast proteins to facilitate efficient nutrient reuse. Here, we report on the intracellular dynamics of an autophagy pathway responsible for piecemeal degradation of chloroplast components. Through live-cell monitoring of chloroplast morphology, we observed the formation of chloroplast budding structures in sugar-starved leaves. These buds were then released and incorporated into the vacuolar lumen as an autophagic cargo termed a Rubisco-containing body. The budding structures did not accumulate in mutants of core autophagy machinery, suggesting that autophagosome creation is required for forming chloroplast buds. Simultaneous tracking of chloroplast morphology and autophagosome development revealed that the isolation membranes of autophagosomes interact closely with part of the chloroplast surface before forming chloroplast buds. Chloroplasts then protrude at the site associated with the isolation membranes, which divide synchronously with autophagosome maturation. This autophagy-related division does not require DYNAMIN-RELATED PROTEIN 5B, which constitutes the division ring for chloroplast proliferation in growing leaves. An unidentified division machinery may thus fragment chloroplasts for degradation in coordination with the development of the chloroplast-associated isolation membrane.