Testing the Münch hypothesis of long distance phloem transport in plants

  1. Michael Knoblauch  Is a corresponding author
  2. Jan Knoblauch
  3. Daniel L Mullendore
  4. Jessica A Savage
  5. Benjamin A Babst
  6. Sierra D Beecher
  7. Adam C Dodgen
  8. Kaare H Jensen
  9. Noel Michele Holbrook
  1. Washington State University, United States
  2. Harvard University, United States
  3. University of Arkansas at Monticello, United States
  4. Technical University of Denmark, Denmark

Abstract

Long distance transport in plants occurs in sieve tubes of the phloem. The pressure flow hypothesis introduced by Ernst Münch in 1930 describes a mechanism of osmotically generated pressure differentials that are supposed to drive the movement of sugars and other solutes in the phloem, but this hypothesis has long faced major challenges. The key issue is whether the conductance of sieve tubes, including sieve plate pores, is sufficient to allow pressure flow. We show that with increasing distance between source and sink, sieve tube conductivity and turgor increases dramatically in Ipomoea nil. Our results provide strong support for the Münch hypothesis, while providing new tools for the investigation of one of the least understood plant tissues.

Article and author information

Author details

  1. Michael Knoblauch

    School of Biological Sciences, Washington State University, Pullman, United States
    For correspondence
    knoblauch@wsu.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Jan Knoblauch

    School of Biological Sciences, Washington State University, Pullman, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Daniel L Mullendore

    School of Biological Sciences, Washington State University, Pullman, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jessica A Savage

    Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Benjamin A Babst

    School of Forestry and Natural Resources, University of Arkansas at Monticello, Monticello, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Sierra D Beecher

    School of Biological Sciences, Washington State University, Pullman, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Adam C Dodgen

    School of Biological Sciences, Washington State University, Pullman, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Kaare H Jensen

    Department of Physics, Technical University of Denmark, Lyngby, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  9. Noel Michele Holbrook

    Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Christian S Hardtke, University of Lausanne, Switzerland

Publication history

  1. Received: February 18, 2016
  2. Accepted: June 1, 2016
  3. Accepted Manuscript published: June 2, 2016 (version 1)
  4. Version of Record published: July 15, 2016 (version 2)

Copyright

© 2016, Knoblauch et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,734
    Page views
  • 1,500
    Downloads
  • 104
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michael Knoblauch
  2. Jan Knoblauch
  3. Daniel L Mullendore
  4. Jessica A Savage
  5. Benjamin A Babst
  6. Sierra D Beecher
  7. Adam C Dodgen
  8. Kaare H Jensen
  9. Noel Michele Holbrook
(2016)
Testing the Münch hypothesis of long distance phloem transport in plants
eLife 5:e15341.
https://doi.org/10.7554/eLife.15341
  1. Further reading

Further reading

    1. Chromosomes and Gene Expression
    2. Plant Biology
    Myeongjune Jeon, Goowon Jeong ... Ilha Lee
    Research Article

    To synchronize flowering time with spring, many plants undergo vernalization, a floral-promotion process triggered by exposure to long-term winter cold. In Arabidopsis thaliana, this is achieved through cold-mediated epigenetic silencing of the floral repressor, FLOWERING LOCUS C (FLC). COOLAIR, a cold-induced antisense RNA transcribed from the FLC locus, has been proposed to facilitate FLC silencing. Here, we show that C-repeat (CRT)/dehydration-responsive elements (DREs) at the 3′-end of FLC and CRT/DRE-binding factors (CBFs) are required for cold-mediated expression of COOLAIR. CBFs bind to CRT/DREs at the 3′-end of FLC, both in vitro and in vivo, and CBF levels increase gradually during vernalization. Cold-induced COOLAIR expression is severely impaired in cbfs mutants in which all CBF genes are knocked-out. Conversely, CBF-overexpressing plants show increased COOLAIR levels even at warm temperatures. We show that COOLAIR is induced by CBFs during early stages of vernalization but COOLAIR levels decrease in later phases as FLC chromatin transitions to an inactive state to which CBFs can no longer bind. We also demonstrate that cbfs and FLCΔCOOLAIR mutants exhibit a normal vernalization response despite their inability to activate COOLAIR expression during cold, revealing that COOLAIR is not required for the vernalization process.

    1. Physics of Living Systems
    2. Plant Biology
    Lauren Sullivan
    Insight

    Dandelion seeds respond to wet weather by closing their plumes, which reduces dispersal when wind conditions are poor.