Tagging motor memories with transcranial direct current stimulation allows later artificially-controlled retrieval

  1. Daichi Nozaki  Is a corresponding author
  2. Atsushi Yokoi
  3. Takahiro Kimura
  4. Masaya Hirashima
  5. Jean-Jacques Orban de Xivry
  1. The University of Tokyo, Japan
  2. University of Western Ontario, Canada
  3. Kochi University of Technology, Japan
  4. National Institute of Information and Communications Technology, Japan
  5. Université catholique de Louvain, Belgium

Abstract

We demonstrate that human motor memories can be artificially tagged and later retrieved by noninvasive transcranial direct-current stimulation (tDCS). Participants learned to adapt reaching movements to two conflicting dynamical environments that were each associated with a different tDCS polarity (anodal or cathodal tDCS) on the sensorimotor cortex. That is, we sought to determine whether divergent background activity levels within the sensorimotor cortex (anodal: higher activity; cathodal: lower activity) give rise to distinct motor memories. After a training session, application of each tDCS polarity automatically resulted in the retrieval of the motor memory corresponding to that polarity. These results reveal that artificial modulation of neural activity in the sensorimotor cortex through tDCS can act as a context for the formation and recollection of motor memories.

Article and author information

Author details

  1. Daichi Nozaki

    Division of Physical and Health Education, The University of Tokyo, Tokyo, Japan
    For correspondence
    nozaki@p.u-tokyo.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1338-8337
  2. Atsushi Yokoi

    The Brain and Mind Institute, University of Western Ontario, London, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7428-3344
  3. Takahiro Kimura

    Research Institute, Kochi University of Technology, Kami City, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Masaya Hirashima

    Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Jean-Jacques Orban de Xivry

    Institute of Information and Communication Technologies, Electronics, and Applied Mathematics, Université catholique de Louvain, Louvain-La-Neuve, Belgium
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4603-7939

Funding

Ministry of Education, Culture, Sports, Science, and Technology (KAKENHI A26242062)

  • Daichi Nozaki
  • Masaya Hirashima

NEXT Program (LS034)

  • Daichi Nozaki

Japan Society for the Promotion of Science (Japan-Belgium Research Cooperative Program)

  • Daichi Nozaki
  • Jean-Jacques Orban de Xivry

Brains Back to Brussels fellowship

  • Jean-Jacques Orban de Xivry

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Richard Ivry, University of California, Berkeley, United States

Ethics

Human subjects: The experiments were conducted in accordance with the Declaration of Helsinki. The ethics committee from The University of Tokyo approved all experimental procedures. Prior to the experiments, participants provided informed consent.

Version history

  1. Received: February 19, 2016
  2. Accepted: July 28, 2016
  3. Accepted Manuscript published: July 29, 2016 (version 1)
  4. Version of Record published: August 22, 2016 (version 2)
  5. Version of Record updated: September 2, 2016 (version 3)

Copyright

© 2016, Nozaki et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,668
    views
  • 800
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Daichi Nozaki
  2. Atsushi Yokoi
  3. Takahiro Kimura
  4. Masaya Hirashima
  5. Jean-Jacques Orban de Xivry
(2016)
Tagging motor memories with transcranial direct current stimulation allows later artificially-controlled retrieval
eLife 5:e15378.
https://doi.org/10.7554/eLife.15378

Share this article

https://doi.org/10.7554/eLife.15378

Further reading

    1. Neuroscience
    Nicola Masala, Manuel Mittag ... Tony Kelly
    Research Article

    Genetically encoded calcium indicators (GECIs) such as GCaMP are invaluable tools in neuroscience to monitor neuronal activity using optical imaging. The viral transduction of GECIs is commonly used to target expression to specific brain regions, can be conveniently used with any mouse strain of interest without the need for prior crossing with a GECI mouse line, and avoids potential hazards due to the chronic expression of GECIs during development. A key requirement for monitoring neuronal activity with an indicator is that the indicator itself minimally affects activity. Here, using common adeno-associated viral (AAV) transduction procedures, we describe spatially confined aberrant Ca2+ microwaves slowly travelling through the hippocampus following expression of GCaMP6, GCaMP7, or R-CaMP1.07 driven by the synapsin promoter with AAV-dependent gene transfer in a titre-dependent fashion. Ca2+ microwaves developed in hippocampal CA1 and CA3, but not dentate gyrus nor neocortex, were typically first observed at 4 wk after viral transduction, and persisted up to at least 8 wk. The phenomenon was robust and observed across laboratories with various experimenters and setups. Our results indicate that aberrant hippocampal Ca2+ microwaves depend on the promoter and viral titre of the GECI, density of expression, as well as the targeted brain region. We used an alternative viral transduction method of GCaMP which avoids this artefact. The results show that commonly used Ca2+-indicator AAV transduction procedures can produce artefactual Ca2+ responses. Our aim is to raise awareness in the field of these artefactual transduction-induced Ca2+ microwaves, and we provide a potential solution.

    1. Neuroscience
    John J Stout, Allison E George ... Amy L Griffin
    Research Article

    Functional interactions between the prefrontal cortex and hippocampus, as revealed by strong oscillatory synchronization in the theta (6–11 Hz) frequency range, correlate with memory-guided decision-making. However, the degree to which this form of long-range synchronization influences memory-guided choice remains unclear. We developed a brain-machine interface that initiated task trials based on the magnitude of prefrontal-hippocampal theta synchronization, then measured choice outcomes. Trials initiated based on strong prefrontal-hippocampal theta synchrony were more likely to be correct compared to control trials on both working memory-dependent and -independent tasks. Prefrontal-thalamic neural interactions increased with prefrontal-hippocampal synchrony and optogenetic activation of the ventral midline thalamus primarily entrained prefrontal theta rhythms, but dynamically modulated synchrony. Together, our results show that prefrontal-hippocampal theta synchronization leads to a higher probability of a correct choice and strengthens prefrontal-thalamic dialogue. Our findings reveal new insights into the neural circuit dynamics underlying memory-guided choices and highlight a promising technique to potentiate cognitive processes or behavior via brain-machine interfacing.