Tagging motor memories with transcranial direct current stimulation allows later artificially-controlled retrieval

  1. Daichi Nozaki  Is a corresponding author
  2. Atsushi Yokoi
  3. Takahiro Kimura
  4. Masaya Hirashima
  5. Jean-Jacques Orban de Xivry
  1. The University of Tokyo, Japan
  2. University of Western Ontario, Canada
  3. Kochi University of Technology, Japan
  4. National Institute of Information and Communications Technology, Japan
  5. Université catholique de Louvain, Belgium

Abstract

We demonstrate that human motor memories can be artificially tagged and later retrieved by noninvasive transcranial direct-current stimulation (tDCS). Participants learned to adapt reaching movements to two conflicting dynamical environments that were each associated with a different tDCS polarity (anodal or cathodal tDCS) on the sensorimotor cortex. That is, we sought to determine whether divergent background activity levels within the sensorimotor cortex (anodal: higher activity; cathodal: lower activity) give rise to distinct motor memories. After a training session, application of each tDCS polarity automatically resulted in the retrieval of the motor memory corresponding to that polarity. These results reveal that artificial modulation of neural activity in the sensorimotor cortex through tDCS can act as a context for the formation and recollection of motor memories.

Article and author information

Author details

  1. Daichi Nozaki

    Division of Physical and Health Education, The University of Tokyo, Tokyo, Japan
    For correspondence
    nozaki@p.u-tokyo.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1338-8337
  2. Atsushi Yokoi

    The Brain and Mind Institute, University of Western Ontario, London, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7428-3344
  3. Takahiro Kimura

    Research Institute, Kochi University of Technology, Kami City, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Masaya Hirashima

    Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Jean-Jacques Orban de Xivry

    Institute of Information and Communication Technologies, Electronics, and Applied Mathematics, Université catholique de Louvain, Louvain-La-Neuve, Belgium
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4603-7939

Funding

Ministry of Education, Culture, Sports, Science, and Technology (KAKENHI A26242062)

  • Daichi Nozaki
  • Masaya Hirashima

NEXT Program (LS034)

  • Daichi Nozaki

Japan Society for the Promotion of Science (Japan-Belgium Research Cooperative Program)

  • Daichi Nozaki
  • Jean-Jacques Orban de Xivry

Brains Back to Brussels fellowship

  • Jean-Jacques Orban de Xivry

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The experiments were conducted in accordance with the Declaration of Helsinki. The ethics committee from The University of Tokyo approved all experimental procedures. Prior to the experiments, participants provided informed consent.

Copyright

© 2016, Nozaki et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,723
    views
  • 803
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Daichi Nozaki
  2. Atsushi Yokoi
  3. Takahiro Kimura
  4. Masaya Hirashima
  5. Jean-Jacques Orban de Xivry
(2016)
Tagging motor memories with transcranial direct current stimulation allows later artificially-controlled retrieval
eLife 5:e15378.
https://doi.org/10.7554/eLife.15378

Share this article

https://doi.org/10.7554/eLife.15378

Further reading

    1. Evolutionary Biology
    2. Neuroscience
    Jenny Chen, Phoebe R Richardson ... Hopi E Hoekstra
    Research Article

    Genetic variation is known to contribute to the variation of animal social behavior, but the molecular mechanisms that lead to behavioral differences are still not fully understood. Here, we investigate the cellular evolution of the hypothalamic preoptic area (POA), a brain region that plays a critical role in social behavior, across two sister species of deer mice (Peromyscus maniculatus and P. polionotus) with divergent social systems. These two species exhibit large differences in mating and parental care behavior across species and sex. Using single-nucleus RNA-sequencing, we build a cellular atlas of the POA for males and females of both Peromyscus species. We identify four cell types that are differentially abundant across species, two of which may account for species differences in parental care behavior based on known functions of these cell types. Our data further implicate two sex-biased cell types to be important for the evolution of sex-specific behavior. Finally, we show a remarkable reduction of sex-biased gene expression in P. polionotus, a monogamous species that also exhibits reduced sexual dimorphism in parental care behavior. Our POA atlas is a powerful resource to investigate how molecular neuronal traits may be evolving to give rise to innate differences in social behavior across animal species.

    1. Neuroscience
    Yisi Liu, Pu Wang ... Hongwei Zhou
    Short Report

    The increasing use of tissue clearing techniques underscores the urgent need for cost-effective and simplified deep imaging methods. While traditional inverted confocal microscopes excel in high-resolution imaging of tissue sections and cultured cells, they face limitations in deep imaging of cleared tissues due to refractive index mismatches between the immersion media of objectives and sample container. To overcome these challenges, the RIM-Deep was developed to significantly improve deep imaging capabilities without compromising the normal function of the confocal microscope. This system facilitates deep immunofluorescence imaging of the prefrontal cortex in cleared macaque tissue, extending imaging depth from 2 mm to 5 mm. Applied to an intact and cleared Thy1-EGFP mouse brain, the system allowed for clear axonal visualization at high imaging depth. Moreover, this advancement enables large-scale, deep 3D imaging of intact tissues. In principle, this concept can be extended to any imaging modality, including existing inverted wide-field, confocal, and two-photon microscopy. This would significantly upgrade traditional laboratory configurations and facilitate the study of connectomes in the brain and other tissues.