Tagging motor memories with transcranial direct current stimulation allows later artificially-controlled retrieval

  1. Daichi Nozaki  Is a corresponding author
  2. Atsushi Yokoi
  3. Takahiro Kimura
  4. Masaya Hirashima
  5. Jean-Jacques Orban de Xivry
  1. The University of Tokyo, Japan
  2. University of Western Ontario, Canada
  3. Kochi University of Technology, Japan
  4. National Institute of Information and Communications Technology, Japan
  5. Université catholique de Louvain, Belgium

Abstract

We demonstrate that human motor memories can be artificially tagged and later retrieved by noninvasive transcranial direct-current stimulation (tDCS). Participants learned to adapt reaching movements to two conflicting dynamical environments that were each associated with a different tDCS polarity (anodal or cathodal tDCS) on the sensorimotor cortex. That is, we sought to determine whether divergent background activity levels within the sensorimotor cortex (anodal: higher activity; cathodal: lower activity) give rise to distinct motor memories. After a training session, application of each tDCS polarity automatically resulted in the retrieval of the motor memory corresponding to that polarity. These results reveal that artificial modulation of neural activity in the sensorimotor cortex through tDCS can act as a context for the formation and recollection of motor memories.

Article and author information

Author details

  1. Daichi Nozaki

    Division of Physical and Health Education, The University of Tokyo, Tokyo, Japan
    For correspondence
    nozaki@p.u-tokyo.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1338-8337
  2. Atsushi Yokoi

    The Brain and Mind Institute, University of Western Ontario, London, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7428-3344
  3. Takahiro Kimura

    Research Institute, Kochi University of Technology, Kami City, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Masaya Hirashima

    Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Jean-Jacques Orban de Xivry

    Institute of Information and Communication Technologies, Electronics, and Applied Mathematics, Université catholique de Louvain, Louvain-La-Neuve, Belgium
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4603-7939

Funding

Ministry of Education, Culture, Sports, Science, and Technology (KAKENHI A26242062)

  • Daichi Nozaki
  • Masaya Hirashima

NEXT Program (LS034)

  • Daichi Nozaki

Japan Society for the Promotion of Science (Japan-Belgium Research Cooperative Program)

  • Daichi Nozaki
  • Jean-Jacques Orban de Xivry

Brains Back to Brussels fellowship

  • Jean-Jacques Orban de Xivry

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The experiments were conducted in accordance with the Declaration of Helsinki. The ethics committee from The University of Tokyo approved all experimental procedures. Prior to the experiments, participants provided informed consent.

Reviewing Editor

  1. Richard Ivry, University of California, Berkeley, United States

Version history

  1. Received: February 19, 2016
  2. Accepted: July 28, 2016
  3. Accepted Manuscript published: July 29, 2016 (version 1)
  4. Version of Record published: August 22, 2016 (version 2)
  5. Version of Record updated: September 2, 2016 (version 3)

Copyright

© 2016, Nozaki et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,601
    Page views
  • 792
    Downloads
  • 13
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Daichi Nozaki
  2. Atsushi Yokoi
  3. Takahiro Kimura
  4. Masaya Hirashima
  5. Jean-Jacques Orban de Xivry
(2016)
Tagging motor memories with transcranial direct current stimulation allows later artificially-controlled retrieval
eLife 5:e15378.
https://doi.org/10.7554/eLife.15378

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Yoshifumi Sonobe, Soojin Lee ... Paschalis Kratsios
    Research Article Updated

    A hexanucleotide repeat expansion in C9ORF72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). A hallmark of ALS/FTD pathology is the presence of dipeptide repeat (DPR) proteins, produced from both sense GGGGCC (poly-GA, poly-GP, poly-GR) and antisense CCCCGG (poly-PR, poly-PG, poly-PA) transcripts. Translation of sense DPRs, such as poly-GA and poly-GR, depends on non-canonical (non-AUG) initiation codons. Here, we provide evidence for canonical AUG-dependent translation of two antisense DPRs, poly-PR and poly-PG. A single AUG is required for synthesis of poly-PR, one of the most toxic DPRs. Unexpectedly, we found redundancy between three AUG codons necessary for poly-PG translation. Further, the eukaryotic translation initiation factor 2D (EIF2D), which was previously implicated in sense DPR synthesis, is not required for AUG-dependent poly-PR or poly-PG translation, suggesting that distinct translation initiation factors control DPR synthesis from sense and antisense transcripts. Our findings on DPR synthesis from the C9ORF72 locus may be broadly applicable to many other nucleotide repeat expansion disorders.

    1. Cell Biology
    2. Neuroscience
    Elisabeth Jongsma, Anita Goyala ... Collin Yvès Ewald
    Research Article Updated

    The amyloid beta (Aβ) plaques found in Alzheimer’s disease (AD) patients’ brains contain collagens and are embedded extracellularly. Several collagens have been proposed to influence Aβ aggregate formation, yet their role in clearance is unknown. To investigate the potential role of collagens in forming and clearance of extracellular aggregates in vivo, we created a transgenic Caenorhabditis elegans strain that expresses and secretes human Aβ1-42. This secreted Aβ forms aggregates in two distinct places within the extracellular matrix. In a screen for extracellular human Aβ aggregation regulators, we identified different collagens to ameliorate or potentiate Aβ aggregation. We show that a disintegrin and metalloprotease a disintegrin and metalloprotease 2 (ADM-2), an ortholog of ADAM9, reduces the load of extracellular Aβ aggregates. ADM-2 is required and sufficient to remove the extracellular Aβ aggregates. Thus, we provide in vivo evidence of collagens essential for aggregate formation and metalloprotease participating in extracellular Aβ aggregate removal.