Tagging motor memories with transcranial direct current stimulation allows later artificially-controlled retrieval

  1. Daichi Nozaki  Is a corresponding author
  2. Atsushi Yokoi
  3. Takahiro Kimura
  4. Masaya Hirashima
  5. Jean-Jacques Orban de Xivry
  1. The University of Tokyo, Japan
  2. University of Western Ontario, Canada
  3. Kochi University of Technology, Japan
  4. National Institute of Information and Communications Technology, Japan
  5. Université catholique de Louvain, Belgium

Abstract

We demonstrate that human motor memories can be artificially tagged and later retrieved by noninvasive transcranial direct-current stimulation (tDCS). Participants learned to adapt reaching movements to two conflicting dynamical environments that were each associated with a different tDCS polarity (anodal or cathodal tDCS) on the sensorimotor cortex. That is, we sought to determine whether divergent background activity levels within the sensorimotor cortex (anodal: higher activity; cathodal: lower activity) give rise to distinct motor memories. After a training session, application of each tDCS polarity automatically resulted in the retrieval of the motor memory corresponding to that polarity. These results reveal that artificial modulation of neural activity in the sensorimotor cortex through tDCS can act as a context for the formation and recollection of motor memories.

Article and author information

Author details

  1. Daichi Nozaki

    Division of Physical and Health Education, The University of Tokyo, Tokyo, Japan
    For correspondence
    nozaki@p.u-tokyo.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1338-8337
  2. Atsushi Yokoi

    The Brain and Mind Institute, University of Western Ontario, London, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7428-3344
  3. Takahiro Kimura

    Research Institute, Kochi University of Technology, Kami City, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Masaya Hirashima

    Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Jean-Jacques Orban de Xivry

    Institute of Information and Communication Technologies, Electronics, and Applied Mathematics, Université catholique de Louvain, Louvain-La-Neuve, Belgium
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4603-7939

Funding

Ministry of Education, Culture, Sports, Science, and Technology (KAKENHI A26242062)

  • Daichi Nozaki
  • Masaya Hirashima

NEXT Program (LS034)

  • Daichi Nozaki

Japan Society for the Promotion of Science (Japan-Belgium Research Cooperative Program)

  • Daichi Nozaki
  • Jean-Jacques Orban de Xivry

Brains Back to Brussels fellowship

  • Jean-Jacques Orban de Xivry

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The experiments were conducted in accordance with the Declaration of Helsinki. The ethics committee from The University of Tokyo approved all experimental procedures. Prior to the experiments, participants provided informed consent.

Copyright

© 2016, Nozaki et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,727
    views
  • 803
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Daichi Nozaki
  2. Atsushi Yokoi
  3. Takahiro Kimura
  4. Masaya Hirashima
  5. Jean-Jacques Orban de Xivry
(2016)
Tagging motor memories with transcranial direct current stimulation allows later artificially-controlled retrieval
eLife 5:e15378.
https://doi.org/10.7554/eLife.15378

Share this article

https://doi.org/10.7554/eLife.15378

Further reading

    1. Neuroscience
    Yafen Li, Yixuan Lin ... Antao Chen
    Research Article

    Concurrent verbal working memory task can eliminate the color-word Stroop effect. Previous research, based on specific and limited resources, suggested that the disappearance of the conflict effect was due to the memory information preempting the resources for distractors. However, it remains unclear which particular stage of Stroop conflict processing is influenced by working memory loads. In this study, electroencephalography (EEG) recordings with event-related potential (ERP) analyses, time-frequency analyses, multivariate pattern analyses (MVPAs), and representational similarity analyses (RSAs) were applied to provide an in-depth investigation of the aforementioned issue. Subjects were required to complete the single task (the classical manual color-word Stroop task) and the dual task (the Sternberg working memory task combined with the Stroop task), respectively. Behaviorally, the results indicated that the Stroop effect was eliminated in the dual-task condition. The EEG results showed that the concurrent working memory task did not modulate the P1, N450, and alpha bands. However, it modulated the sustained potential (SP), late theta (740–820 ms), and beta (920–1040 ms) power, showing no difference between congruent and incongruent trials in the dual-task condition but significant difference in the single-task condition. Importantly, the RSA results revealed that the neural activation pattern of the late theta was similar to the response interaction pattern. Together, these findings implied that the concurrent working memory task eliminated the Stroop effect through disrupting stimulus-response mapping.

    1. Evolutionary Biology
    2. Neuroscience
    Anastasia A Makarova, Nicholas J Chua ... Alexey A Polilov
    Research Article

    The structure of compound eyes in arthropods has been the subject of many studies, revealing important biological principles. Until recently, these studies were constrained by the two-dimensional nature of available ultrastructural data. By taking advantage of the novel three-dimensional ultrastructural dataset obtained using volume electron microscopy, we present the first cellular-level reconstruction of the whole compound eye of an insect, the miniaturized parasitoid wasp Megaphragma viggianii. The compound eye of the female M. viggianii consists of 29 ommatidia and contains 478 cells. Despite the almost anucleate brain, all cells of the compound eye contain nuclei. As in larger insects, the dorsal rim area of the eye in M. viggianii contains ommatidia that are believed to be specialized in polarized light detection as reflected in their corneal and retinal morphology. We report the presence of three ‘ectopic’ photoreceptors. Our results offer new insights into the miniaturization of compound eyes and scaling of sensory organs in general.