Increasing Notch signaling antagonizes PRC2-mediated silencing to promote reprograming of germ cells into neurons

  1. Stefanie Seelk
  2. Irene Adrian-Kalchhauser
  3. Balázs Hargitai
  4. Martina Hajduskova
  5. Silvia Gutnik
  6. Baris Tursun  Is a corresponding author
  7. Rafal Ciosk  Is a corresponding author
  1. Max-Delbrück-Center for Molecular Medicine, Germany
  2. Friedrich Miescher Institute for Biomedical Research, Switzerland

Abstract

Cell-fate reprograming is at the heart of development, yet very little is known about the molecular mechanisms promoting or inhibiting reprograming in intact organisms. In the C. elegans germline, reprograming germ cells into somatic cells requires chromatin perturbation. Here, we describe that such reprograming is facilitated by GLP-1/Notch signaling pathway. This is surprising, since this pathway is best known for maintaining undifferentiated germline stem cells/progenitors. Through a combination of genetics, tissue-specific transcriptome analysis, and functional studies of candidate genes, we uncovered a possible explanation for this unexpected role of GLP-1/Notch. We propose that GLP-1/Notch promotes reprograming by activating specific genes, silenced by the Polycomb repressive complex 2 (PRC2), and identify the conserved histone demethylase UTX-1 as a crucial GLP-1/Notch target facilitating reprograming. These findings have wide implications, ranging from development to diseases associated with abnormal Notch signaling.

Article and author information

Author details

  1. Stefanie Seelk

    Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Irene Adrian-Kalchhauser

    Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Balázs Hargitai

    Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Martina Hajduskova

    Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Silvia Gutnik

    Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  6. Baris Tursun

    Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
    For correspondence
    baris.tursun@mdc-berlin.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7293-8629
  7. Rafal Ciosk

    Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
    For correspondence
    rafal.ciosk@fmi.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2234-6216

Funding

European Research Council (ERC-2014-STG #637530 - REPROWORM)

  • Baris Tursun

Helmholtz-Gemeinschaft (MDC PhD)

  • Stefanie Seelk

European Research Council (FP7-PEOPLE-2012-CIG #333922- REPROL53U48)

  • Baris Tursun

European Cooperation in Science and Technology (SBFI C15.0038)

  • Rafal Ciosk

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Seelk et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,558
    views
  • 689
    downloads
  • 33
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Stefanie Seelk
  2. Irene Adrian-Kalchhauser
  3. Balázs Hargitai
  4. Martina Hajduskova
  5. Silvia Gutnik
  6. Baris Tursun
  7. Rafal Ciosk
(2016)
Increasing Notch signaling antagonizes PRC2-mediated silencing to promote reprograming of germ cells into neurons
eLife 5:e15477.
https://doi.org/10.7554/eLife.15477

Share this article

https://doi.org/10.7554/eLife.15477

Further reading

    1. Developmental Biology
    Eric R Brooks, Andrew R Moorman ... Jennifer A Zallen
    Tools and Resources

    The formation of the mammalian brain requires regionalization and morphogenesis of the cranial neural plate, which transforms from an epithelial sheet into a closed tube that provides the structural foundation for neural patterning and circuit formation. Sonic hedgehog (SHH) signaling is important for cranial neural plate patterning and closure, but the transcriptional changes that give rise to the spatially regulated cell fates and behaviors that build the cranial neural tube have not been systematically analyzed. Here, we used single-cell RNA sequencing to generate an atlas of gene expression at six consecutive stages of cranial neural tube closure in the mouse embryo. Ordering transcriptional profiles relative to the major axes of gene expression predicted spatially regulated expression of 870 genes along the anterior-posterior and mediolateral axes of the cranial neural plate and reproduced known expression patterns with over 85% accuracy. Single-cell RNA sequencing of embryos with activated SHH signaling revealed distinct SHH-regulated transcriptional programs in the developing forebrain, midbrain, and hindbrain, suggesting a complex interplay between anterior-posterior and mediolateral patterning systems. These results define a spatiotemporally resolved map of gene expression during cranial neural tube closure and provide a resource for investigating the transcriptional events that drive early mammalian brain development.

    1. Developmental Biology
    Mehmet Mahsum Kaplan, Erika Hudacova ... Ondrej Machon
    Research Article

    Hair follicle development is initiated by reciprocal molecular interactions between the placode-forming epithelium and the underlying mesenchyme. Cell fate transformation in dermal fibroblasts generates a cell niche for placode induction by activation of signaling pathways WNT, EDA, and FGF in the epithelium. These successive paracrine epithelial signals initiate dermal condensation in the underlying mesenchyme. Although epithelial signaling from the placode to mesenchyme is better described, little is known about primary mesenchymal signals resulting in placode induction. Using genetic approach in mice, we show that Meis2 expression in cells derived from the neural crest is critical for whisker formation and also for branching of trigeminal nerves. While whisker formation is independent of the trigeminal sensory innervation, MEIS2 in mesenchymal dermal cells orchestrates the initial steps of epithelial placode formation and subsequent dermal condensation. MEIS2 regulates the expression of transcription factor Foxd1, which is typical of pre-dermal condensation. However, deletion of Foxd1 does not affect whisker development. Overall, our data suggest an early role of mesenchymal MEIS2 during whisker formation and provide evidence that whiskers can normally develop in the absence of sensory innervation or Foxd1 expression.