Hypothalamic transcriptomes of 99 mouse strains reveal trans eQTL hotspots, splicing QTLs and novel non-coding genes

Abstract

Previous studies had shown that integration of genome wide expression profiles, in metabolic tissues, with genetic and phenotypic variance, provided valuable insight into the underlying molecular mechanisms. We used RNA-Seq to characterize hypothalamic transcriptome in 99 inbred strains of mice from the Hybrid Mouse Diversity Panel (HMDP), a reference resource population for cardiovascular and metabolic traits. We report numerous novel transcripts supported by proteomic analyses, as well as novel non coding RNAs. High resolution genetic mapping of transcript levels in HMDP, reveals both local and trans expression Quantitative Trait Loci (eQTLs) demonstrating 2 trans eQTL 'hotspots' associated with expression of hundreds of genes. We also report thousands of alternative splicing events regulated by genetic variants. Finally, comparison with about 150 metabolic and cardiovascular traits revealed many highly significant associations. Our data provides a rich resource for understanding the many physiologic functions mediated by the hypothalamus and their genetic regulation.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Yehudit Hasin-Brumshtein

    Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
    For correspondence
    yehudit.hasin@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7528-603X
  2. Arshad H Khan

    Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Farhad Hormozdiari

    Department of Computer Science, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Calvin Pan

    Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Brian W Parks

    Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Vladislav A Petyuk

    Biological Sciences Division, Pacific Northwest National Laboratory, Richland, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Paul D Piehowski

    Biological Sciences Division, Pacific Northwest National Laboratory, Richland, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Anneke Bruemmer

    Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Matteo Pellegrini

    Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Xinshu Xiao

    Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Eleazar Eskin

    Department of Computer Science, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Richard D Smith

    Biological Sciences Division, Pacific Northwest National Laboratory, Richland, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Aldons J Lusis

    Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Desmond J Smith

    Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institutes of Health (R01HG006264)

  • Xinshu Xiao

National Institutes of Health (R01GM098273)

  • Yehudit Hasin-Brumshtein
  • Arshad H Khan
  • Calvin Pan
  • Vladislav A Petyuk
  • Paul D Piehowski
  • Richard D Smith
  • Aldons J Lusis
  • Desmond J Smith

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The animal protocol for the study was approved by the Institutional Animal Care and Use Committee (IACUC) at University of California, Los Angeles.

Copyright

© 2016, Hasin-Brumshtein et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,025
    views
  • 513
    downloads
  • 37
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.15614

Further reading

    1. Genetics and Genomics
    Yi Li, Long Gong ... Shangbang Gao
    Research Article

    Resistance to anthelmintics, particularly the macrocyclic lactone ivermectin (IVM), presents a substantial global challenge for parasite control. We found that the functional loss of an evolutionarily conserved E3 ubiquitin ligase, UBR-1, leads to IVM resistance in Caenorhabditis elegans. Multiple IVM-inhibiting activities, including viability, body size, pharyngeal pumping, and locomotion, were significantly ameliorated in various ubr-1 mutants. Interestingly, exogenous application of glutamate induces IVM resistance in wild-type animals. The sensitivity of all IVM-affected phenotypes of ubr-1 is restored by eliminating proteins associated with glutamate metabolism or signaling: GOT-1, a transaminase that converts aspartate to glutamate, and EAT-4, a vesicular glutamate transporter. We demonstrated that IVM-targeted GluCls (glutamate-gated chloride channels) are downregulated and that the IVM-mediated inhibition of serotonin-activated pharynx Ca2+ activity is diminished in ubr-1. Additionally, enhancing glutamate uptake in ubr-1 mutants through ceftriaxone completely restored their IVM sensitivity. Therefore, UBR-1 deficiency-mediated aberrant glutamate signaling leads to ivermectin resistance in C. elegans.

    1. Genetics and Genomics
    Minsoo Noh, Xiangguo Che ... Sihoon Lee
    Research Article

    Osteoporosis, characterized by reduced bone density and strength, increases fracture risk, pain, and limits mobility. Established therapies of parathyroid hormone (PTH) analogs effectively promote bone formation and reduce fractures in severe osteoporosis, but their use is limited by potential adverse effects. In the pursuit of safer osteoporosis treatments, we investigated R25CPTH, a PTH variant wherein the native arginine at position 25 is substituted by cysteine. These studies were prompted by our finding of high bone mineral density in a hypoparathyroidism patient with the R25C homozygous mutation, and we explored its effects on PTH type-1 receptor (PTH1R) signaling in cells and bone metabolism in mice. Our findings indicate that R25CPTH(1–84) forms dimers both intracellularly and extracellularly, and the synthetic dimeric peptide, R25CPTH(1–34), exhibits altered activity in PTH1R-mediated cyclic AMP (cAMP) response. Upon a single injection in mice, dimeric R25CPTH(1–34) induced acute calcemic and phosphaturic responses comparable to PTH(1–34). Furthermore, repeated daily injections increased calvarial bone thickness in intact mice and improved trabecular and cortical bone parameters in ovariectomized (OVX) mice, akin to PTH(1–34). The overall results reveal a capacity of a dimeric PTH peptide ligand to activate the PTH1R in vitro and in vivo as PTH, suggesting a potential path of therapeutic PTH analog development.