Hypothalamic transcriptomes of 99 mouse strains reveal trans eQTL hotspots, splicing QTLs and novel non-coding genes

Abstract

Previous studies had shown that integration of genome wide expression profiles, in metabolic tissues, with genetic and phenotypic variance, provided valuable insight into the underlying molecular mechanisms. We used RNA-Seq to characterize hypothalamic transcriptome in 99 inbred strains of mice from the Hybrid Mouse Diversity Panel (HMDP), a reference resource population for cardiovascular and metabolic traits. We report numerous novel transcripts supported by proteomic analyses, as well as novel non coding RNAs. High resolution genetic mapping of transcript levels in HMDP, reveals both local and trans expression Quantitative Trait Loci (eQTLs) demonstrating 2 trans eQTL 'hotspots' associated with expression of hundreds of genes. We also report thousands of alternative splicing events regulated by genetic variants. Finally, comparison with about 150 metabolic and cardiovascular traits revealed many highly significant associations. Our data provides a rich resource for understanding the many physiologic functions mediated by the hypothalamus and their genetic regulation.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Yehudit Hasin-Brumshtein

    Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
    For correspondence
    yehudit.hasin@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7528-603X
  2. Arshad H Khan

    Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Farhad Hormozdiari

    Department of Computer Science, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Calvin Pan

    Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Brian W Parks

    Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Vladislav A Petyuk

    Biological Sciences Division, Pacific Northwest National Laboratory, Richland, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Paul D Piehowski

    Biological Sciences Division, Pacific Northwest National Laboratory, Richland, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Anneke Bruemmer

    Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Matteo Pellegrini

    Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Xinshu Xiao

    Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Eleazar Eskin

    Department of Computer Science, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Richard D Smith

    Biological Sciences Division, Pacific Northwest National Laboratory, Richland, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Aldons J Lusis

    Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Desmond J Smith

    Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institutes of Health (R01HG006264)

  • Xinshu Xiao

National Institutes of Health (R01GM098273)

  • Yehudit Hasin-Brumshtein
  • Arshad H Khan
  • Calvin Pan
  • Vladislav A Petyuk
  • Paul D Piehowski
  • Richard D Smith
  • Aldons J Lusis
  • Desmond J Smith

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Joel K Elmquist, University of Texas Southwestern Medical Center, United States

Ethics

Animal experimentation: The animal protocol for the study was approved by the Institutional Animal Care and Use Committee (IACUC) at University of California, Los Angeles.

Version history

  1. Received: February 27, 2016
  2. Accepted: September 12, 2016
  3. Accepted Manuscript published: September 13, 2016 (version 1)
  4. Version of Record published: October 6, 2016 (version 2)

Copyright

© 2016, Hasin-Brumshtein et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,886
    Page views
  • 501
    Downloads
  • 25
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yehudit Hasin-Brumshtein
  2. Arshad H Khan
  3. Farhad Hormozdiari
  4. Calvin Pan
  5. Brian W Parks
  6. Vladislav A Petyuk
  7. Paul D Piehowski
  8. Anneke Bruemmer
  9. Matteo Pellegrini
  10. Xinshu Xiao
  11. Eleazar Eskin
  12. Richard D Smith
  13. Aldons J Lusis
  14. Desmond J Smith
(2016)
Hypothalamic transcriptomes of 99 mouse strains reveal trans eQTL hotspots, splicing QTLs and novel non-coding genes
eLife 5:e15614.
https://doi.org/10.7554/eLife.15614

Share this article

https://doi.org/10.7554/eLife.15614

Further reading

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Erandi Velazquez-Miranda, Ming He
    Insight

    Endothelial cell subpopulations are characterized by unique gene expression profiles, epigenetic landscapes and functional properties.

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Xinjian Ye, Yijing Bai ... Qianming Chen
    Research Article

    Periodontitis drives irreversible destruction of periodontal tissue and is prone to exacerbating inflammatory disorders. Systemic immunomodulatory management continues to be an attractive approach in periodontal care, particularly within the context of ‘predictive, preventive, and personalized’ periodontics. The present study incorporated genetic proxies identified through genome-wide association studies for circulating immune cells and periodontitis into a comprehensive Mendelian randomization (MR) framework. Univariable MR, multivariable MR, subgroup analysis, reverse MR, and Bayesian model averaging (MR-BMA) were utilized to investigate the causal relationships. Furthermore, transcriptome-wide association study and colocalization analysis were deployed to pinpoint the underlying genes. Consequently, the MR study indicated a causal association between circulating neutrophils, natural killer T cells, plasmacytoid dendritic cells, and an elevated risk of periodontitis. MR-BMA analysis revealed that neutrophils were the primary contributors to periodontitis. The high-confidence genes S100A9 and S100A12, located on 1q21.3, could potentially serve as immunomodulatory targets for neutrophil-mediated periodontitis. These findings hold promise for early diagnosis, risk assessment, targeted prevention, and personalized treatment of periodontitis. Considering the marginal association observed in our study, further research is required to comprehend the biological underpinnings and ascertain the clinical relevance thoroughly.