The Arabidopsis thaliana mobilome and its impact at the species level

  1. Leandro Quadrana
  2. Amanda Bortolini Silveira
  3. George F Mayhew
  4. Chantal LeBlanc
  5. Robert A Martienssen
  6. Jeffrey A Jeddeloh
  7. Vincent Colot  Is a corresponding author
  1. Institut de Biologie de l'École Normale Supérieure, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, France
  2. Roche NimbleGen, Inc, United States
  3. Yale University, United States
  4. Howard Hughes Medical Institute, Gordon and Betty Moore Foundation, United States

Abstract

Transposable elements (TEs) are powerful motors of genome evolution yet a comprehensive assessment of recent transposition activity at the species level is lacking for most organisms. Here, using genome sequencing data for 211 Arabidopsis thaliana accessions taken from across the globe, we identify thousands of recent transposition events involving half of the 326 TE families annotated in this plant species. We further show that the composition and activity of the 'mobilome' vary extensively between accessions in relation to climate and genetic factors. Moreover, TEs insert equally throughout the genome and are rapidly purged by natural selection from gene-rich regions because they frequently affect genes, in multiple ways. Remarkably, loci controlling adaptive responses to the environment are the most frequent transposition targets observed. These findings demonstrate the pervasive, species-wide impact that a rich mobilome can have and the importance of transposition as a recurrent generator of large-effect alleles.

Article and author information

Author details

  1. Leandro Quadrana

    Ecole Normale Supérieure, Institut de Biologie de l'École Normale Supérieure, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Paris, France
    Competing interests
    No competing interests declared.
  2. Amanda Bortolini Silveira

    Ecole Normale Supérieure, Institut de Biologie de l'École Normale Supérieure, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Paris, France
    Competing interests
    No competing interests declared.
  3. George F Mayhew

    Roche NimbleGen, Inc, Madison, United States
    Competing interests
    George F Mayhew, GFM declares a competing interest as employee of Roche NimbleGen Inc..
  4. Chantal LeBlanc

    Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
    Competing interests
    No competing interests declared.
  5. Robert A Martienssen

    Howard Hughes Medical Institute, Gordon and Betty Moore Foundation, Palo Alto, United States
    Competing interests
    No competing interests declared.
  6. Jeffrey A Jeddeloh

    Roche NimbleGen, Inc, Madison, United States
    Competing interests
    Jeffrey A Jeddeloh, JAJ declares a competing interest as employee of Roche NimbleGen Inc..
  7. Vincent Colot

    Ecole Normale Supérieure, Institut de Biologie de l'École Normale Supérieure, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Paris, France
    For correspondence
    colot@biologie.ens.fr
    Competing interests
    No competing interests declared.

Reviewing Editor

  1. Daniel Zilberman, University of California, Berkeley, United States

Version history

  1. Received: March 2, 2016
  2. Accepted: June 1, 2016
  3. Accepted Manuscript published: June 3, 2016 (version 1)
  4. Version of Record published: June 22, 2016 (version 2)

Copyright

© 2016, Quadrana et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,201
    Page views
  • 1,730
    Downloads
  • 199
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Leandro Quadrana
  2. Amanda Bortolini Silveira
  3. George F Mayhew
  4. Chantal LeBlanc
  5. Robert A Martienssen
  6. Jeffrey A Jeddeloh
  7. Vincent Colot
(2016)
The Arabidopsis thaliana mobilome and its impact at the species level
eLife 5:e15716.
https://doi.org/10.7554/eLife.15716

Share this article

https://doi.org/10.7554/eLife.15716

Further reading

    1. Plant Biology
    Ivan Kulich, Julia Schmid ... Jiří Friml
    Research Article

    Root gravitropic bending represents a fundamental aspect of terrestrial plant physiology. Gravity is perceived by sedimentation of starch-rich plastids (statoliths) to the bottom of the central root cap cells. Following gravity perception, intercellular auxin transport is redirected downwards leading to an asymmetric auxin accumulation at the lower root side causing inhibition of cell expansion, ultimately resulting in downwards bending. How gravity-induced statoliths repositioning is translated into asymmetric auxin distribution remains unclear despite PIN auxin efflux carriers and the Negative Gravitropic Response of roots (NGR) proteins polarize along statolith sedimentation, thus providing a plausible mechanism for auxin flow redirection. In this study, using a functional NGR1-GFP construct, we visualized the NGR1 localization on the statolith surface and plasma membrane (PM) domains in close proximity to the statoliths, correlating with their movements. We determined that NGR1 binding to these PM domains is indispensable for NGR1 functionality and relies on cysteine acylation and adjacent polybasic regions as well as on lipid and sterol PM composition. Detailed timing of the early events following graviperception suggested that both NGR1 repolarization and initial auxin asymmetry precede the visible PIN3 polarization. This discrepancy motivated us to unveil a rapid, NGR-dependent translocation of PIN-activating AGCVIII kinase D6PK towards lower PMs of gravity-perceiving cells, thus providing an attractive model for rapid redirection of auxin fluxes following gravistimulation.

    1. Plant Biology
    Daniel S Yu, Megan A Outram ... Simon J Williams
    Research Article

    Plant pathogens secrete proteins, known as effectors, that function in the apoplast or inside plant cells to promote virulence. Effector recognition by cell-surface or cytosolic receptors results in the activation of defence pathways and plant immunity. Despite their importance, our general understanding of fungal effector function and recognition by immunity receptors remains poor. One complication often associated with effectors is their high sequence diversity and lack of identifiable sequence motifs precluding prediction of structure or function. In recent years, several studies have demonstrated that fungal effectors can be grouped into structural classes, despite significant sequence variation and existence across taxonomic groups. Using protein X-ray crystallography, we identify a new structural class of effectors hidden within the secreted in xylem (SIX) effectors from Fusarium oxysporum f. sp. lycopersici (Fol). The recognised effectors Avr1 (SIX4) and Avr3 (SIX1) represent the founding members of the Fol dual-domain (FOLD) effector class, with members containing two distinct domains. Using AlphaFold2, we predicted the full SIX effector repertoire of Fol and show that SIX6 and SIX13 are also FOLD effectors, which we validated experimentally for SIX6. Based on structural prediction and comparisons, we show that FOLD effectors are present within three divisions of fungi and are expanded in pathogens and symbionts. Further structural comparisons demonstrate that Fol secretes effectors that adopt a limited number of structural folds during infection of tomato. This analysis also revealed a structural relationship between transcriptionally co-regulated effector pairs. We make use of the Avr1 structure to understand its recognition by the I receptor, which leads to disease resistance in tomato. This study represents an important advance in our understanding of Fol-tomato, and by extension plant–fungal interactions, which will assist in the development of novel control and engineering strategies to combat plant pathogens.