The Arabidopsis thaliana mobilome and its impact at the species level

  1. Leandro Quadrana
  2. Amanda Bortolini Silveira
  3. George F Mayhew
  4. Chantal LeBlanc
  5. Robert A Martienssen
  6. Jeffrey A Jeddeloh
  7. Vincent Colot  Is a corresponding author
  1. Institut de Biologie de l'École Normale Supérieure, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, France
  2. Roche NimbleGen, Inc, United States
  3. Yale University, United States
  4. Howard Hughes Medical Institute, Gordon and Betty Moore Foundation, United States

Abstract

Transposable elements (TEs) are powerful motors of genome evolution yet a comprehensive assessment of recent transposition activity at the species level is lacking for most organisms. Here, using genome sequencing data for 211 Arabidopsis thaliana accessions taken from across the globe, we identify thousands of recent transposition events involving half of the 326 TE families annotated in this plant species. We further show that the composition and activity of the 'mobilome' vary extensively between accessions in relation to climate and genetic factors. Moreover, TEs insert equally throughout the genome and are rapidly purged by natural selection from gene-rich regions because they frequently affect genes, in multiple ways. Remarkably, loci controlling adaptive responses to the environment are the most frequent transposition targets observed. These findings demonstrate the pervasive, species-wide impact that a rich mobilome can have and the importance of transposition as a recurrent generator of large-effect alleles.

Article and author information

Author details

  1. Leandro Quadrana

    Ecole Normale Supérieure, Institut de Biologie de l'École Normale Supérieure, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Paris, France
    Competing interests
    No competing interests declared.
  2. Amanda Bortolini Silveira

    Ecole Normale Supérieure, Institut de Biologie de l'École Normale Supérieure, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Paris, France
    Competing interests
    No competing interests declared.
  3. George F Mayhew

    Roche NimbleGen, Inc, Madison, United States
    Competing interests
    George F Mayhew, GFM declares a competing interest as employee of Roche NimbleGen Inc..
  4. Chantal LeBlanc

    Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
    Competing interests
    No competing interests declared.
  5. Robert A Martienssen

    Howard Hughes Medical Institute, Gordon and Betty Moore Foundation, Palo Alto, United States
    Competing interests
    No competing interests declared.
  6. Jeffrey A Jeddeloh

    Roche NimbleGen, Inc, Madison, United States
    Competing interests
    Jeffrey A Jeddeloh, JAJ declares a competing interest as employee of Roche NimbleGen Inc..
  7. Vincent Colot

    Ecole Normale Supérieure, Institut de Biologie de l'École Normale Supérieure, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Paris, France
    For correspondence
    colot@biologie.ens.fr
    Competing interests
    No competing interests declared.

Reviewing Editor

  1. Daniel Zilberman, University of California, Berkeley, United States

Version history

  1. Received: March 2, 2016
  2. Accepted: June 1, 2016
  3. Accepted Manuscript published: June 3, 2016 (version 1)
  4. Version of Record published: June 22, 2016 (version 2)

Copyright

© 2016, Quadrana et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,438
    views
  • 1,748
    downloads
  • 260
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Leandro Quadrana
  2. Amanda Bortolini Silveira
  3. George F Mayhew
  4. Chantal LeBlanc
  5. Robert A Martienssen
  6. Jeffrey A Jeddeloh
  7. Vincent Colot
(2016)
The Arabidopsis thaliana mobilome and its impact at the species level
eLife 5:e15716.
https://doi.org/10.7554/eLife.15716

Share this article

https://doi.org/10.7554/eLife.15716

Further reading

    1. Plant Biology
    Zhao-Ying Zeng, Jun-Rong Huang ... Han-Bo Zhang
    Research Article

    Microbes strongly affect invasive plant growth. However, how phyllosphere and rhizosphere soil microbes distinctively affect seedling mortality and growth of invaders across ontogeny under varying soil nutrient levels remains unclear. In this study, we used the invader Ageratina adenophora to evaluate these effects. We found that higher proportions of potential pathogens were detected in core microbial taxa in leaf litter than rhizosphere soil and thus leaf inoculation had more adverse effects on seed germination and seedling survival than soil inoculation. Microbial inoculation at different growth stages altered the microbial community and functions of seedlings, and earlier inoculation had a more adverse effect on seedling survival and growth. The soil nutrient level did not affect microbe-mediated seedling growth and the relative abundance of the microbial community and functions involved in seedling growth. The effects of some microbial genera on seedling survival are distinct from those on growth. Moreover, the A. adenophora seedling-killing effects of fungal strains isolated from dead seedlings by non-sterile leaf inoculation exhibited significant phylogenetic signals, by which strains of Allophoma and Alternaria generally caused high seedling mortality. Our study stresses the essential role of A. adenophora litter microbes in population establishment by regulating seedling density and growth.

    1. Plant Biology
    Vilde Olsson Lalun, Maike Breiden ... Melinka A Butenko
    Research Article

    The abscission of floral organs and emergence of lateral roots in Arabidopsis is regulated by the peptide ligand inflorescence deficient in abscission (IDA) and the receptor protein kinases HAESA (HAE) and HAESA-like 2 (HSL2). During these cell separation processes, the plant induces defense-associated genes to protect against pathogen invasion. However, the molecular coordination between abscission and immunity has not been thoroughly explored. Here, we show that IDA induces a release of cytosolic calcium ions (Ca2+) and apoplastic production of reactive oxygen species, which are signatures of early defense responses. In addition, we find that IDA promotes late defense responses by the transcriptional upregulation of genes known to be involved in immunity. When comparing the IDA induced early immune responses to known immune responses, such as those elicited by flagellin22 treatment, we observe both similarities and differences. We propose a molecular mechanism by which IDA promotes signatures of an immune response in cells destined for separation to guard them from pathogen attack.