Abstract

Ubiquitin is essential for eukaryotic life and varies in only 3 amino acid positions between yeast and humans. However, recent deep sequencing studies indicate that ubiquitin is highly tolerant to single mutations. We hypothesized that this tolerance would be reduced by chemically induced physiologic perturbations. To test this hypothesis, a class of first year UCSF graduate students employed deep mutational scanning to determine the fitness landscape of all possible single residue mutations in the presence of five different small molecule perturbations. These perturbations uncover 'shared sensitized positions' localized to areas around the hydrophobic patch and the C-terminus. In addition, we identified perturbation specific effects such as a sensitization of His68 in HU and a tolerance to mutation at Lys63 in DTT. Our data show how chemical stresses can reduce buffering effects in the ubiquitin proteasome system. Finally, this study demonstrates the potential of lab-based interdisciplinary graduate curriculum.

Article and author information

Author details

  1. David Mavor

    Biophysics Graduate Group, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Kyle Barlow

    Bioinformatics Graduate Group, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Samuel Thompson

    Biophysics Graduate Group, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Benjamin A Barad

    Biophysics Graduate Group, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Alain R Bonny

    Biophysics Graduate Group, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Clinton L Cario

    Bioinformatics Graduate Group, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Garrett Gaskins

    Biophysics Graduate Group, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Zairan Liu

    Biophysics Graduate Group, University of California, San Francisco, San Fransisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Laura Deming

    Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Seth D Axen

    Bioinformatics Graduate Group, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Elena Caceres

    Bioinformatics Graduate Group, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Weilin Chen

    Bioinformatics Graduate Group, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Adolfo Cuesta

    Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Rachel Gate

    Bioinformatics Graduate Group, University of California, San Francisco, San Fransisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Evan M Green

    Biophysics Graduate Group, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Kaitlin R Hulce

    Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Weiyue Ji

    Biophysics Graduate Group, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Lillian R Kenner

    Biophysics Graduate Group, University of California, San Francisco, San Fransisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  19. Bruk Mensa

    Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  20. Leanna S Morinishi

    Bioinformatics Graduate Group, University of California, San Francisco, San Fransisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  21. Steven M Moss

    Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  22. Marco Mravic

    Biophysics Graduate Group, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  23. Ryan K Muir

    Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  24. Stefan Niekamp

    Biophysics Graduate Group, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  25. Chimno I Nnadi

    Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  26. Eugene Palovcak

    Biophysics Graduate Group, University of California, San Francisco, San Fransisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  27. Erin M Poss

    Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  28. Tyler D Ross

    Biophysics Graduate Group, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  29. Eugenia C Salcedo

    Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  30. Stephanie See

    Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  31. Meena Subramaniam

    Bioinformatics Graduate Group, University of California, San Francisco, San Fransisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  32. Allison W Wong

    Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  33. Jennifer Li

    UCSF Science and Health Education Partnership, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  34. Kurt S Thorn

    UCSF Science and Health Education Partnership, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  35. Shane Thomas Ó Conchúir

    Department of Bioengineering and Therapeutic Science, California Institute for Quantitative Biology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  36. Benjamin P Roscoe

    Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  37. Eric D Chow

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  38. Joseph L DeRisi

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  39. Tanja Kortemme

    Department of Bioengineering and Therapeutic Science, California Institute for Quantitative Biology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  40. Daniel NA Bolon

    Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  41. James S Fraser

    Department of Bioengineering and Therapeutic Science, California Institute for Quantitative Biology, University of California, San Francisco, San Francisco, United States
    For correspondence
    jfraser@fraserlab.com
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Jeffery W Kelly, Scripps Research Institute, United States

Version history

  1. Received: March 5, 2016
  2. Accepted: April 6, 2016
  3. Accepted Manuscript published: April 25, 2016 (version 1)
  4. Version of Record published: May 9, 2016 (version 2)

Copyright

© 2016, Mavor et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,340
    views
  • 660
    downloads
  • 72
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. David Mavor
  2. Kyle Barlow
  3. Samuel Thompson
  4. Benjamin A Barad
  5. Alain R Bonny
  6. Clinton L Cario
  7. Garrett Gaskins
  8. Zairan Liu
  9. Laura Deming
  10. Seth D Axen
  11. Elena Caceres
  12. Weilin Chen
  13. Adolfo Cuesta
  14. Rachel Gate
  15. Evan M Green
  16. Kaitlin R Hulce
  17. Weiyue Ji
  18. Lillian R Kenner
  19. Bruk Mensa
  20. Leanna S Morinishi
  21. Steven M Moss
  22. Marco Mravic
  23. Ryan K Muir
  24. Stefan Niekamp
  25. Chimno I Nnadi
  26. Eugene Palovcak
  27. Erin M Poss
  28. Tyler D Ross
  29. Eugenia C Salcedo
  30. Stephanie See
  31. Meena Subramaniam
  32. Allison W Wong
  33. Jennifer Li
  34. Kurt S Thorn
  35. Shane Thomas Ó Conchúir
  36. Benjamin P Roscoe
  37. Eric D Chow
  38. Joseph L DeRisi
  39. Tanja Kortemme
  40. Daniel NA Bolon
  41. James S Fraser
(2016)
Determination of ubiquitin fitness landscapes under different chemical stresses in a classroom setting
eLife 5:e15802.
https://doi.org/10.7554/eLife.15802

Share this article

https://doi.org/10.7554/eLife.15802

Further reading

    1. Cell Biology
    2. Computational and Systems Biology
    N Suhas Jagannathan, Javier Yu Peng Koh ... Lisa Tucker-Kellogg
    Research Article

    Bats have unique characteristics compared to other mammals, including increased longevity and higher resistance to cancer and infectious disease. While previous studies have analyzed the metabolic requirements for flight, it is still unclear how bat metabolism supports these unique features, and no study has integrated metabolomics, transcriptomics, and proteomics to characterize bat metabolism. In this work, we performed a multi-omics data analysis using a computational model of metabolic fluxes to identify fundamental differences in central metabolism between primary lung fibroblast cell lines from the black flying fox fruit bat (Pteropus alecto) and human. Bat cells showed higher expression levels of Complex I components of electron transport chain (ETC), but, remarkably, a lower rate of oxygen consumption. Computational modeling interpreted these results as indicating that Complex II activity may be low or reversed, similar to an ischemic state. An ischemic-like state of bats was also supported by decreased levels of central metabolites and increased ratios of succinate to fumarate in bat cells. Ischemic states tend to produce reactive oxygen species (ROS), which would be incompatible with the longevity of bats. However, bat cells had higher antioxidant reservoirs (higher total glutathione and higher ratio of NADPH to NADP) despite higher mitochondrial ROS levels. In addition, bat cells were more resistant to glucose deprivation and had increased resistance to ferroptosis, one of the characteristics of which is oxidative stress. Thus, our studies revealed distinct differences in the ETC regulation and metabolic stress responses between human and bat cells.

    1. Computational and Systems Biology
    2. Neuroscience
    Sara Ibañez, Nilapratim Sengupta ... Christina M Weaver
    Research Article

    Normal aging leads to myelin alterations in the rhesus monkey dorsolateral prefrontal cortex (dlPFC), which are positively correlated with degree of cognitive impairment. It is hypothesized that remyelination with shorter and thinner myelin sheaths partially compensates for myelin degradation, but computational modeling has not yet explored these two phenomena together systematically. Here, we used a two-pronged modeling approach to determine how age-related myelin changes affect a core cognitive function: spatial working memory. First, we built a multicompartment pyramidal neuron model fit to monkey dlPFC empirical data, with an axon including myelinated segments having paranodes, juxtaparanodes, internodes, and tight junctions. This model was used to quantify conduction velocity (CV) changes and action potential (AP) failures after demyelination and subsequent remyelination. Next, we incorporated the single neuron results into a spiking neural network model of working memory. While complete remyelination nearly recovered axonal transmission and network function to unperturbed levels, our models predict that biologically plausible levels of myelin dystrophy, if uncompensated by other factors, can account for substantial working memory impairment with aging. The present computational study unites empirical data from ultrastructure up to behavior during normal aging, and has broader implications for many demyelinating conditions, such as multiple sclerosis or schizophrenia.