Inactivation of oncogenic cAMP-specific phosphodiesterase 4D by miR-139-5p in response to p53 activation

  1. Bo Cao
  2. Kebing Wang
  3. Jun-ming Liao
  4. Xiang Zhou
  5. Peng Liao
  6. Shelya X Zeng
  7. Meifang He
  8. Lianzhou Chen
  9. Yulong He
  10. Wen Li  Is a corresponding author
  11. Hua Lu  Is a corresponding author
  1. Tulane University School of Medicine, United States
  2. The First Affiliated Hospital, Sun Yat-Sen University, China
  3. The First Affiliated Hospital, Sun Yat-sen University,, China

Abstract

Increasing evidence highlights the important roles of microRNAs in mediating p53's tumor suppression functions. Here, we report miR-139-5p as another new p53 microRNA target. p53 induced the transcription of miR-139-5p, which in turn suppressed the protein levels of phosphodiesterase 4D (PDE4D), an oncogenic protein involved in multiple tumor promoting processes. Knockdown of p53 reversed these effects. Also, overexpression of miR-139-5p decreased PDE4D levels and increased cellular cAMP levels, leading to BIM-mediated cell growth arrest. Furthermore, our analysis of human colorectal tumor specimens revealed significant inverse correlation between the expression of miR-139-5p and that of PDE4D. Finally, overexpression of miR-139-5p suppressed the growth of xenograft tumors, accompanied by decrease in PDE4D and increase in BIM. These results demonstrate that p53 inactivates oncogenic PDE4D by inducing the expression of miR-139-5p.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Bo Cao

    Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Kebing Wang

    Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Jun-ming Liao

    Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Xiang Zhou

    Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Peng Liao

    Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Shelya X Zeng

    Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Meifang He

    Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University,, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Lianzhou Chen

    Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University,, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Yulong He

    Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University,, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Wen Li

    Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
    For correspondence
    wenli28@163.com
    Competing interests
    The authors declare that no competing interests exist.
  11. Hua Lu

    Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States
    For correspondence
    hlu2@tulane.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9285-7209

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#4257R) of Tulane University. All surgery was performed under sodium pentobarbital anesthesia, and every effort was made to minimize suffering.

Copyright

© 2016, Cao et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,151
    views
  • 313
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Bo Cao
  2. Kebing Wang
  3. Jun-ming Liao
  4. Xiang Zhou
  5. Peng Liao
  6. Shelya X Zeng
  7. Meifang He
  8. Lianzhou Chen
  9. Yulong He
  10. Wen Li
  11. Hua Lu
(2016)
Inactivation of oncogenic cAMP-specific phosphodiesterase 4D by miR-139-5p in response to p53 activation
eLife 5:e15978.
https://doi.org/10.7554/eLife.15978

Share this article

https://doi.org/10.7554/eLife.15978

Further reading

    1. Cancer Biology
    2. Cell Biology
    Francesca Butera, Julia E Sero ... Chris Bakal
    Research Article

    The canonical NF-κB transcription factor RELA is a master regulator of immune and stress responses and is upregulated in PDAC tumours. In this study, we characterised previously unexplored endogenous RELA-GFP dynamics in PDAC cell lines through live single cell imaging. Our observations revealed that TNFα stimulation induces rapid, sustained, and non-oscillatory nuclear translocation of RELA. Through Bayesian analysis of single cell datasets with variation in nuclear RELA, we predicted that RELA heterogeneity in PDAC cell lines is dependent on F-actin dynamics. RNA-seq analysis identified distinct clusters of RELA-regulated gene expression in PDAC cells, including TNFα-induced RELA upregulation of the actin regulators NUAK2 and ARHGAP31. Further, siRNA-mediated depletion of ARHGAP31 and NUAK2 altered TNFα-stimulated nuclear RELA dynamics in PDAC cells, establishing a novel negative feedback loop that regulates RELA activation by TNFα. Additionally, we characterised the NF-κB pathway in PDAC cells, identifying how NF-κB/IκB proteins genetically and physically interact with RELA in the absence or presence of TNFα. Taken together, we provide computational and experimental support for interdependence between the F-actin network and the NF-κB pathway with RELA translocation dynamics in PDAC.

    1. Cancer Biology
    Danielle Algranati, Roni Oren ... Efrat Shema
    Research Article

    Diffuse midline gliomas (DMGs) are aggressive and fatal pediatric tumors of the central nervous system that are highly resistant to treatments. Lysine to methionine substitution of residue 27 on histone H3 (H3-K27M) is a driver mutation in DMGs, reshaping the epigenetic landscape of these cells to promote tumorigenesis. H3-K27M gliomas are characterized by deregulation of histone acetylation and methylation pathways, as well as the oncogenic MYC pathway. In search of effective treatment, we examined the therapeutic potential of dual targeting of histone deacetylases (HDACs) and MYC in these tumors. Treatment of H3-K27M patient-derived cells with Sulfopin, an inhibitor shown to block MYC-driven tumors in vivo, in combination with the HDAC inhibitor Vorinostat, resulted in substantial decrease in cell viability. Moreover, transcriptome and epigenome profiling revealed synergistic effect of this drug combination in downregulation of prominent oncogenic pathways such as mTOR. Finally, in vivo studies of patient-derived orthotopic xenograft models showed significant tumor growth reduction in mice treated with the drug combination. These results highlight the combined treatment with PIN1 and HDAC inhibitors as a promising therapeutic approach for these aggressive tumors.