Inactivation of oncogenic cAMP-specific phosphodiesterase 4D by miR-139-5p in response to p53 activation

  1. Bo Cao
  2. Kebing Wang
  3. Jun-ming Liao
  4. Xiang Zhou
  5. Peng Liao
  6. Shelya X Zeng
  7. Meifang He
  8. Lianzhou Chen
  9. Yulong He
  10. Wen Li  Is a corresponding author
  11. Hua Lu  Is a corresponding author
  1. Tulane University School of Medicine, United States
  2. The First Affiliated Hospital, Sun Yat-Sen University, China
  3. The First Affiliated Hospital, Sun Yat-sen University,, China

Abstract

Increasing evidence highlights the important roles of microRNAs in mediating p53's tumor suppression functions. Here, we report miR-139-5p as another new p53 microRNA target. p53 induced the transcription of miR-139-5p, which in turn suppressed the protein levels of phosphodiesterase 4D (PDE4D), an oncogenic protein involved in multiple tumor promoting processes. Knockdown of p53 reversed these effects. Also, overexpression of miR-139-5p decreased PDE4D levels and increased cellular cAMP levels, leading to BIM-mediated cell growth arrest. Furthermore, our analysis of human colorectal tumor specimens revealed significant inverse correlation between the expression of miR-139-5p and that of PDE4D. Finally, overexpression of miR-139-5p suppressed the growth of xenograft tumors, accompanied by decrease in PDE4D and increase in BIM. These results demonstrate that p53 inactivates oncogenic PDE4D by inducing the expression of miR-139-5p.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Bo Cao

    Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Kebing Wang

    Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Jun-ming Liao

    Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Xiang Zhou

    Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Peng Liao

    Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Shelya X Zeng

    Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Meifang He

    Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University,, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Lianzhou Chen

    Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University,, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Yulong He

    Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University,, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Wen Li

    Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
    For correspondence
    wenli28@163.com
    Competing interests
    The authors declare that no competing interests exist.
  11. Hua Lu

    Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States
    For correspondence
    hlu2@tulane.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9285-7209

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#4257R) of Tulane University. All surgery was performed under sodium pentobarbital anesthesia, and every effort was made to minimize suffering.

Copyright

© 2016, Cao et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,155
    views
  • 313
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Bo Cao
  2. Kebing Wang
  3. Jun-ming Liao
  4. Xiang Zhou
  5. Peng Liao
  6. Shelya X Zeng
  7. Meifang He
  8. Lianzhou Chen
  9. Yulong He
  10. Wen Li
  11. Hua Lu
(2016)
Inactivation of oncogenic cAMP-specific phosphodiesterase 4D by miR-139-5p in response to p53 activation
eLife 5:e15978.
https://doi.org/10.7554/eLife.15978

Share this article

https://doi.org/10.7554/eLife.15978

Further reading

    1. Cancer Biology
    2. Computational and Systems Biology
    Rosalyn W Sayaman, Masaru Miyano ... Mark LaBarge
    Research Article

    Effects from aging in single cells are heterogenous, whereas at the organ- and tissue-levels aging phenotypes tend to appear as stereotypical changes. The mammary epithelium is a bilayer of two major phenotypically and functionally distinct cell lineages: luminal epithelial and myoepithelial cells. Mammary luminal epithelia exhibit substantial stereotypical changes with age that merit attention because these cells are the putative cells-of-origin for breast cancers. We hypothesize that effects from aging that impinge upon maintenance of lineage fidelity increase susceptibility to cancer initiation. We generated and analyzed transcriptomes from primary luminal epithelial and myoepithelial cells from younger <30 (y)ears old and older >55y women. In addition to age-dependent directional changes in gene expression, we observed increased transcriptional variance with age that contributed to genome-wide loss of lineage fidelity. Age-dependent variant responses were common to both lineages, whereas directional changes were almost exclusively detected in luminal epithelia and involved altered regulation of chromatin and genome organizers such as SATB1. Epithelial expression of gap junction protein GJB6 increased with age, and modulation of GJB6 expression in heterochronous co-cultures revealed that it provided a communication conduit from myoepithelial cells that drove directional change in luminal cells. Age-dependent luminal transcriptomes comprised a prominent signal that could be detected in bulk tissue during aging and transition into cancers. A machine learning classifier based on luminal-specific aging distinguished normal from cancer tissue and was highly predictive of breast cancer subtype. We speculate that luminal epithelia are the ultimate site of integration of the variant responses to aging in their surrounding tissue, and that their emergent phenotype both endows cells with the ability to become cancer-cells-of-origin and represents a biosensor that presages cancer susceptibility.

    1. Cancer Biology
    Jae Hun Shin, Jooyoung Park ... Alfred LM Bothwell
    Research Article

    Metastasis is the leading cause of cancer-related mortality. Paneth cells provide stem cell niche factors in homeostatic conditions, but the underlying mechanisms of cancer stem cell niche development are unclear. Here, we report that Dickkopf-2 (DKK2) is essential for the generation of cancer cells with Paneth cell properties during colon cancer metastasis. Splenic injection of Dkk2 knockout (KO) cancer organoids into C57BL/6 mice resulted in a significant reduction of liver metastases. Transcriptome analysis showed reduction of Paneth cell markers such as lysozymes in KO organoids. Single-cell RNA sequencing analyses of murine metastasized colon cancer cells and patient samples identified the presence of lysozyme positive cells with Paneth cell properties including enhanced glycolysis. Further analyses of transcriptome and chromatin accessibility suggested hepatocyte nuclear factor 4 alpha (HNF4A) as a downstream target of DKK2. Chromatin immunoprecipitation followed by sequencing analysis revealed that HNF4A binds to the promoter region of Sox9, a well-known transcription factor for Paneth cell differentiation. In the liver metastatic foci, DKK2 knockout rescued HNF4A protein levels followed by reduction of lysozyme positive cancer cells. Taken together, DKK2-mediated reduction of HNF4A protein promotes the generation of lysozyme positive cancer cells with Paneth cell properties in the metastasized colon cancers.