Role of Nfu1 and Bol3 in iron-sulfur cluster transfer to mitochondrial clients

  1. Andrew Melber
  2. Un Na
  3. Ajay Vashisht
  4. Benjamin D Weiler
  5. Roland Lill
  6. James A Wohlschlegel
  7. Dennis R Winge  Is a corresponding author
  1. University of Utah Health Sciences Center, United States
  2. David Geffen School of Medicine at UCLA, United States
  3. Philipps-Universität Marburg, Germany

Abstract

Iron-sulfur (Fe-S) clusters are essential for many cellular processes, ranging from aerobic respiration, metabolite biosynthesis, ribosome assembly and DNA repair. Mutations in NFU1 and BOLA3 have been linked to genetic diseases with defects in mitochondrial Fe-S centers. Through genetic studies in yeast, we demonstrate that Nfu1 functions in a late step of [4Fe-4S] cluster biogenesis that is of heightened importance during oxidative metabolism. Proteomic studies revealed Nfu1 physical interacts with components of the ISA [4Fe-4S] assembly complex and client proteins that need [4Fe-4S] clusters to function. Additional studies focused on the mitochondrial BolA proteins, Bol1 and Bol3 (yeast homolog to human BOLA3), revealing that Bol1 functions earlier in Fe-S biogenesis with the monothiol glutaredoxin, Grx5, and Bol3 functions late with Nfu1. Given these observations, we propose that Nfu1, assisted by Bol3, functions to facilitate Fe-S transfer from the biosynthetic apparatus to the client proteins preventing oxidative damage to [4Fe-4S] clusters.

Article and author information

Author details

  1. Andrew Melber

    Department of Medicine, University of Utah Health Sciences Center, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Un Na

    Department of Medicine, University of Utah Health Sciences Center, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ajay Vashisht

    Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Benjamin D Weiler

    Institut für Zytobiologie, Philipps-Universität Marburg, Marburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Roland Lill

    Institut für Zytobiologie, Philipps-Universität Marburg, Marburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8345-6518
  6. James A Wohlschlegel

    Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Dennis R Winge

    Department of Medicine, University of Utah Health Sciences Center, Salt Lake City, United States
    For correspondence
    dennis.winge@hsc.utah.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1160-1189

Funding

National Institutes of Health (RO1 GM110755)

  • Dennis R Winge

National Institutes of Health (R01 GM112763)

  • James A Wohlschlegel

National Institutes of Health (T32 DK007115)

  • Andrew Melber

Deutsche Forschungsgemeinschaft (SPP 1710)

  • Roland Lill

Deutsche Forschungsgemeinschaft (Spp 1927)

  • Roland Lill

National Institutes of Health (P30 CA042014)

  • Dennis R Winge

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Melber et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,168
    views
  • 542
    downloads
  • 106
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andrew Melber
  2. Un Na
  3. Ajay Vashisht
  4. Benjamin D Weiler
  5. Roland Lill
  6. James A Wohlschlegel
  7. Dennis R Winge
(2016)
Role of Nfu1 and Bol3 in iron-sulfur cluster transfer to mitochondrial clients
eLife 5:e15991.
https://doi.org/10.7554/eLife.15991

Share this article

https://doi.org/10.7554/eLife.15991

Further reading

    1. Biochemistry and Chemical Biology
    2. Cancer Biology
    Flavie Coquel, Sing-Zong Ho ... Philippe Pasero
    Research Article

    Cancer cells display high levels of oncogene-induced replication stress (RS) and rely on DNA damage checkpoint for viability. This feature is exploited by cancer therapies to either increase RS to unbearable levels or inhibit checkpoint kinases involved in the DNA damage response. Thus far, treatments that combine these two strategies have shown promise but also have severe adverse effects. To identify novel, better-tolerated anticancer combinations, we screened a collection of plant extracts and found two natural compounds from the plant, Psoralea corylifolia, that synergistically inhibit cancer cell proliferation. Bakuchiol inhibited DNA replication and activated the checkpoint kinase CHK1 by targeting DNA polymerases. Isobavachalcone interfered with DNA double-strand break repair by inhibiting the checkpoint kinase CHK2 and DNA end resection. The combination of bakuchiol and isobavachalcone synergistically inhibited cancer cell proliferation in vitro. Importantly, it also prevented tumor development in xenografted NOD/SCID mice. The synergistic effect of inhibiting DNA replication and CHK2 signaling identifies a vulnerability of cancer cells that might be exploited by using clinically approved inhibitors in novel combination therapies.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Santi Mestre-Fos, Lucas Ferguson ... Jamie HD Cate
    Research Article

    Stem cell differentiation involves a global increase in protein synthesis to meet the demands of specialized cell types. However, the molecular mechanisms underlying this translational burst and the involvement of initiation factors remains largely unknown. Here, we investigate the role of eukaryotic initiation factor 3 (eIF3) in early differentiation of human pluripotent stem cell (hPSC)-derived neural progenitor cells (NPCs). Using Quick-irCLIP and alternative polyadenylation (APA) Seq, we show eIF3 crosslinks predominantly with 3’ untranslated region (3’-UTR) termini of multiple mRNA isoforms, adjacent to the poly(A) tail. Furthermore, we find that eIF3 engagement at 3’-UTR ends is dependent on polyadenylation. High eIF3 crosslinking at 3’-UTR termini of mRNAs correlates with high translational activity, as determined by ribosome profiling, but not with translational efficiency. The results presented here show that eIF3 engages with 3’-UTR termini of highly translated mRNAs, likely reflecting a general rather than specific regulatory function of eIF3, and supporting a role of mRNA circularization in the mechanisms governing mRNA translation.