Role of Nfu1 and Bol3 in iron-sulfur cluster transfer to mitochondrial clients

  1. Andrew Melber
  2. Un Na
  3. Ajay Vashisht
  4. Benjamin D Weiler
  5. Roland Lill
  6. James A Wohlschlegel
  7. Dennis R Winge  Is a corresponding author
  1. University of Utah Health Sciences Center, United States
  2. David Geffen School of Medicine at UCLA, United States
  3. Philipps-Universität Marburg, Germany

Abstract

Iron-sulfur (Fe-S) clusters are essential for many cellular processes, ranging from aerobic respiration, metabolite biosynthesis, ribosome assembly and DNA repair. Mutations in NFU1 and BOLA3 have been linked to genetic diseases with defects in mitochondrial Fe-S centers. Through genetic studies in yeast, we demonstrate that Nfu1 functions in a late step of [4Fe-4S] cluster biogenesis that is of heightened importance during oxidative metabolism. Proteomic studies revealed Nfu1 physical interacts with components of the ISA [4Fe-4S] assembly complex and client proteins that need [4Fe-4S] clusters to function. Additional studies focused on the mitochondrial BolA proteins, Bol1 and Bol3 (yeast homolog to human BOLA3), revealing that Bol1 functions earlier in Fe-S biogenesis with the monothiol glutaredoxin, Grx5, and Bol3 functions late with Nfu1. Given these observations, we propose that Nfu1, assisted by Bol3, functions to facilitate Fe-S transfer from the biosynthetic apparatus to the client proteins preventing oxidative damage to [4Fe-4S] clusters.

Article and author information

Author details

  1. Andrew Melber

    Department of Medicine, University of Utah Health Sciences Center, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Un Na

    Department of Medicine, University of Utah Health Sciences Center, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ajay Vashisht

    Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Benjamin D Weiler

    Institut für Zytobiologie, Philipps-Universität Marburg, Marburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Roland Lill

    Institut für Zytobiologie, Philipps-Universität Marburg, Marburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8345-6518
  6. James A Wohlschlegel

    Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Dennis R Winge

    Department of Medicine, University of Utah Health Sciences Center, Salt Lake City, United States
    For correspondence
    dennis.winge@hsc.utah.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1160-1189

Funding

National Institutes of Health (RO1 GM110755)

  • Dennis R Winge

National Institutes of Health (R01 GM112763)

  • James A Wohlschlegel

National Institutes of Health (T32 DK007115)

  • Andrew Melber

Deutsche Forschungsgemeinschaft (SPP 1710)

  • Roland Lill

Deutsche Forschungsgemeinschaft (Spp 1927)

  • Roland Lill

National Institutes of Health (P30 CA042014)

  • Dennis R Winge

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Nikolaus Pfanner, University of Freiburg, Germany

Version history

  1. Received: March 11, 2016
  2. Accepted: August 16, 2016
  3. Accepted Manuscript published: August 17, 2016 (version 1)
  4. Version of Record published: September 7, 2016 (version 2)

Copyright

© 2016, Melber et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,146
    views
  • 539
    downloads
  • 105
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andrew Melber
  2. Un Na
  3. Ajay Vashisht
  4. Benjamin D Weiler
  5. Roland Lill
  6. James A Wohlschlegel
  7. Dennis R Winge
(2016)
Role of Nfu1 and Bol3 in iron-sulfur cluster transfer to mitochondrial clients
eLife 5:e15991.
https://doi.org/10.7554/eLife.15991

Share this article

https://doi.org/10.7554/eLife.15991

Further reading

    1. Biochemistry and Chemical Biology
    Daljit Sangar, Elizabeth Hill ... Jan Bieschke
    Research Article

    Prions replicate via the autocatalytic conversion of cellular prion protein (PrPC) into fibrillar assemblies of misfolded PrP. While this process has been extensively studied in vivo and in vitro, non-physiological reaction conditions of fibril formation in vitro have precluded the identification and mechanistic analysis of cellular proteins, which may alter PrP self-assembly and prion replication. Here, we have developed a fibril formation assay for recombinant murine and human PrP (23-231) under near-native conditions (NAA) to study the effect of cellular proteins, which may be risk factors or potential therapeutic targets in prion disease. Genetic screening suggests that variants that increase syntaxin-6 expression in the brain (gene: STX6) are risk factors for sporadic Creutzfeldt-Jakob disease (CJD). Analysis of the protein in NAA revealed, counterintuitively, that syntaxin-6 is a potent inhibitor of PrP fibril formation. It significantly delayed the lag phase of fibril formation at highly sub-stoichiometric molar ratios. However, when assessing toxicity of different aggregation time points to primary neurons, syntaxin-6 prolonged the presence of neurotoxic PrP species. Electron microscopy and super-resolution fluorescence microscopy revealed that, instead of highly ordered fibrils, in the presence of syntaxin-6 PrP formed less-ordered aggregates containing syntaxin-6. These data strongly suggest that the protein can directly alter the initial phase of PrP self-assembly and, uniquely, can act as an 'anti-chaperone', which promotes toxic aggregation intermediates by inhibiting fibril formation.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Birol Cabukusta, Shalom Borst Pauwels ... Jacques Neefjes
    Research Article

    Numerous lipids are heterogeneously distributed among organelles. Most lipid trafficking between organelles is achieved by a group of lipid transfer proteins (LTPs) that carry lipids using their hydrophobic cavities. The human genome encodes many intracellular LTPs responsible for lipid trafficking and the function of many LTPs in defining cellular lipid levels and distributions is unclear. Here, we created a gene knockout library targeting 90 intracellular LTPs and performed whole-cell lipidomics analysis. This analysis confirmed known lipid disturbances and identified new ones caused by the loss of LTPs. Among these, we found major sphingolipid imbalances in ORP9 and ORP11 knockout cells, two proteins of previously unknown function in sphingolipid metabolism. ORP9 and ORP11 form a heterodimer to localize at the ER-trans-Golgi membrane contact sites, where the dimer exchanges phosphatidylserine (PS) for phosphatidylinositol-4-phosphate (PI(4)P) between the two organelles. Consequently, loss of either protein causes phospholipid imbalances in the Golgi apparatus that result in lowered sphingomyelin synthesis at this organelle. Overall, our LTP knockout library toolbox identifies various proteins in control of cellular lipid levels, including the ORP9-ORP11 heterodimer, which exchanges PS and PI(4)P at the ER-Golgi membrane contact site as a critical step in sphingomyelin synthesis in the Golgi apparatus.