1. Physics of Living Systems
  2. Neuroscience
Download icon

Direct mechanical stimulation of tip links in hair cells through DNA tethers

  1. Aakash Basu
  2. Samuel Lagier
  3. Maria Vologodskaia
  4. Brian A Fabella
  5. A J Hudspeth  Is a corresponding author
  1. Howard Hughes Medical Institute, The Rockefeller University, United States
Short Report
  • Cited 15
  • Views 1,674
  • Annotations
Cite this article as: eLife 2016;5:e16041 doi: 10.7554/eLife.16041

Abstract

Mechanoelectrical transduction by hair cells commences with hair-bundle deflection, which is postulated to tense filamentous tip links connected to transduction channels. Because direct mechanical stimulation of tip links has not been experimentally possible, this hypothesis has not been tested directly. We have engineered DNA tethers that link superparamagnetic beads to tip links and exert mechanical forces on the links when exposed to a magnetic-field gradient. By pulling directly on tip links of the bullfrog's sacculus we have evoked transduction currents from hair cells, confirming the hypothesis that tension in the tip links opens transduction channels. This demonstration of direct mechanical access to tip links additionally lays a foundation for experiments probing the mechanics of individual channels.

Article and author information

Author details

  1. Aakash Basu

    Laboratory of Sensory Neuroscience, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Samuel Lagier

    Laboratory of Sensory Neuroscience, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Maria Vologodskaia

    Laboratory of Sensory Neuroscience, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Brian A Fabella

    Laboratory of Sensory Neuroscience, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. A J Hudspeth

    Laboratory of Sensory Neuroscience, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
    For correspondence
    hudspaj@rockefeller.edu
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All procedures were approved by the University's Institutional Animal Care and Use Committee under protocol 13665. Animals were sacrificed by dual pithing after anesthesia by immersion in ethyl-3-aminobenzoate methanesulfonic acid.

Reviewing Editor

  1. Frank Jülicher, Max Planck Institute for the Physics of Complex Systems, Germany

Publication history

  1. Received: March 15, 2016
  2. Accepted: June 21, 2016
  3. Accepted Manuscript published: June 22, 2016 (version 1)
  4. Version of Record published: July 19, 2016 (version 2)

Copyright

© 2016, Basu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,674
    Page views
  • 444
    Downloads
  • 15
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Physics of Living Systems
    Judith Miné-Hattab et al.
    Research Article Updated

    In response to double strand breaks (DSB), repair proteins accumulate at damaged sites, forming membrane-less sub-compartments or foci. Here we explored the physical nature of these foci, using single molecule microscopy in living cells. Rad52, the functional homolog of BRCA2 in yeast, accumulates at DSB sites and diffuses ~6 times faster within repair foci than the focus itself, exhibiting confined motion. The Rad52 confinement radius coincides with the focus size: foci resulting from 2 DSBs are twice larger in volume that the ones induced by a unique DSB and the Rad52 confinement radius scales accordingly. In contrast, molecules of the single strand binding protein Rfa1 follow anomalous diffusion similar to the focus itself or damaged chromatin. We conclude that while most Rfa1 molecules are bound to the ssDNA, Rad52 molecules are free to explore the entire focus reflecting the existence of a liquid droplet around damaged DNA.

    1. Physics of Living Systems
    2. Stem Cells and Regenerative Medicine
    Simona Hankeova et al.
    Research Article

    Organ function depends on tissues adopting the correct architecture. However, insights into organ architecture are currently hampered by an absence of standardized quantitative 3D analysis. We aimed to develop a robust technology to visualize, digitalize, and segment the architecture of two tubular systems in 3D: double resin casting micro computed tomography (DUCT). As proof of principle, we applied DUCT to a mouse model for Alagille syndrome (Jag1Ndr/Ndr mice), characterized by intrahepatic bile duct paucity, that can spontaneously generate a biliary system in adulthood. DUCT identified increased central biliary branching and peripheral bile duct tortuosity as two compensatory processes occurring in distinct regions of Jag1Ndr/Ndr liver, leading to full reconstitution of wild-type biliary volume and phenotypic recovery. DUCT is thus a powerful new technology for 3D analysis, which can reveal novel phenotypes and provide a standardized method of defining liver architecture in mouse models.