Emergence and evolution of an interaction between intrinsically disordered proteins

  1. Greta Hultqvist  Is a corresponding author
  2. Emma Åberg
  3. Carlo Camilloni
  4. Gustav N Sundell
  5. Eva Andersson
  6. Jakob Dogan
  7. Celestine N chi
  8. Michele Vendruscolo  Is a corresponding author
  9. Per Jemth  Is a corresponding author
  1. Uppsala University, Sweden
  2. University of Cambridge, United Kingdom
  3. ETH Zürich, Switzerland

Abstract

Protein-protein interactions involving intrinsically disordered proteins are important for cellular function and common in all organisms. However, it is not clear how such interactions emerge and evolve on a molecular level. We performed phylogenetic reconstruction, resurrection and biophysical characterization of two interacting disordered protein domains, CID and NCBD. CID appeared after the divergence of protostomes and deuterostomes 450-600 million years ago, while NCBD was present in the protostome/deuterostome ancestor. The most ancient CID/NCBD formed a relatively weak complex (Kd~5 μM). At the time of the first vertebrate-specific whole genome duplication the affinity had increased (Kd~200 nM) and was maintained in further speciation. Experiments together with molecular modeling using NMR chemical shifts suggest that new interactions involving intrinsically disordered proteins may evolve via a low affinity complex which is optimized by modulating direct interactions as well as dynamics, while tolerating several potentially disruptive mutations.

Data availability

The following previously published data sets were used
    1. Mehta TK
    2. et al
    (2013) Japanese lamprey genome project
    Publicly available at the Japanese Lamprey Genome Project.
    1. Sterck L
    2. et al.
    (2012) OrcA
    Publicly available at the Bioinformatics and Evolutionary Genomics.

Article and author information

Author details

  1. Greta Hultqvist

    Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
    For correspondence
    greta.hultqvist@pubcare.uu.se
    Competing interests
    The authors declare that no competing interests exist.
  2. Emma Åberg

    Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  3. Carlo Camilloni

    Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Gustav N Sundell

    Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  5. Eva Andersson

    Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  6. Jakob Dogan

    Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  7. Celestine N chi

    Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4154-2378
  8. Michele Vendruscolo

    Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    mv245@cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3616-1610
  9. Per Jemth

    Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
    For correspondence
    Per.Jemth@imbim.uu.se
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1516-7228

Funding

Vetenskapsrådet

  • Per Jemth

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jeffery W Kelly, The Scripps Research Institute, United States

Version history

  1. Received: March 15, 2016
  2. Accepted: March 28, 2017
  3. Accepted Manuscript published: April 11, 2017 (version 1)
  4. Version of Record published: May 5, 2017 (version 2)
  5. Version of Record updated: February 12, 2018 (version 3)

Copyright

© 2017, Hultqvist et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,273
    views
  • 987
    downloads
  • 33
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Greta Hultqvist
  2. Emma Åberg
  3. Carlo Camilloni
  4. Gustav N Sundell
  5. Eva Andersson
  6. Jakob Dogan
  7. Celestine N chi
  8. Michele Vendruscolo
  9. Per Jemth
(2017)
Emergence and evolution of an interaction between intrinsically disordered proteins
eLife 6:e16059.
https://doi.org/10.7554/eLife.16059

Share this article

https://doi.org/10.7554/eLife.16059

Further reading

    1. Structural Biology and Molecular Biophysics
    Sebastian Jojoa-Cruz, Adrienne E Dubin ... Andrew B Ward
    Research Advance

    The dimeric two-pore OSCA/TMEM63 family has recently been identified as mechanically activated ion channels. Previously, based on the unique features of the structure of OSCA1.2, we postulated the potential involvement of several structural elements in sensing membrane tension (Jojoa-Cruz et al., 2018). Interestingly, while OSCA1, 2, and 3 clades are activated by membrane stretch in cell-attached patches (i.e. they are stretch-activated channels), they differ in their ability to transduce membrane deformation induced by a blunt probe (poking). Here, in an effort to understand the domains contributing to mechanical signal transduction, we used cryo-electron microscopy to solve the structure of Arabidopsis thaliana (At) OSCA3.1, which, unlike AtOSCA1.2, only produced stretch- but not poke-activated currents in our initial characterization (Murthy et al., 2018). Mutagenesis and electrophysiological assessment of conserved and divergent putative mechanosensitive features of OSCA1.2 reveal a selective disruption of the macroscopic currents elicited by poking without considerable effects on stretch-activated currents (SAC). Our results support the involvement of the amphipathic helix and lipid-interacting residues in the membrane fenestration in the response to poking. Our findings position these two structural elements as potential sources of functional diversity within the family.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Tien M Phan, Young C Kim ... Jeetain Mittal
    Research Article

    The heterochromatin protein 1 (HP1) family is a crucial component of heterochromatin with diverse functions in gene regulation, cell cycle control, and cell differentiation. In humans, there are three paralogs, HP1α, HP1β, and HP1γ, which exhibit remarkable similarities in their domain architecture and sequence properties. Nevertheless, these paralogs display distinct behaviors in liquid-liquid phase separation (LLPS), a process linked to heterochromatin formation. Here, we employ a coarse-grained simulation framework to uncover the sequence features responsible for the observed differences in LLPS. We highlight the significance of the net charge and charge patterning along the sequence in governing paralog LLPS propensities. We also show that both highly conserved folded and less-conserved disordered domains contribute to the observed differences. Furthermore, we explore the potential co-localization of different HP1 paralogs in multicomponent assemblies and the impact of DNA on this process. Importantly, our study reveals that DNA can significantly reshape the stability of a minimal condensate formed by HP1 paralogs due to competitive interactions of HP1α with HP1β and HP1γ versus DNA. In conclusion, our work highlights the physicochemical nature of interactions that govern the distinct phase-separation behaviors of HP1 paralogs and provides a molecular framework for understanding their role in chromatin organization.