Neural pattern change during encoding of a narrative predicts retrospective duration estimates

  1. Olga Lositsky  Is a corresponding author
  2. Janice Chen
  3. Daniel Toker
  4. Christopher J Honey
  5. Michael Shvartsman
  6. Jordan L Poppenk
  7. Uri Hasson
  8. Kenneth A Norman  Is a corresponding author
  1. Princeton University, United States
  2. University of California, Berkeley, United States
  3. University of Toronto, Canada
  4. Queen's University, Canada

Abstract

What mechanisms support our ability to estimate durations on the order of minutes? Behavioral studies in humans have shown that changes in contextual features lead to overestimation of past durations. Based on evidence that the medial temporal lobes and prefrontal cortex represent contextual features, we related the degree of fMRI pattern change in these regions with people's subsequent duration estimates. After listening to a radio story in the scanner, participants were asked how much time had elapsed between pairs of clips from the story. Our ROI analyses found that duration estimates were correlated with the neural pattern distance between two clips at encoding in the right entorhinal cortex. Moreover, whole-brain searchlight analyses revealed a cluster spanning the right anterior temporal lobe. Our findings provide convergent support for the hypothesis that retrospective time judgments are driven by 'drift' in contextual representations supported by these regions.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Olga Lositsky

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    For correspondence
    lositsky@princeton.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7089-4474
  2. Janice Chen

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Daniel Toker

    Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Christopher J Honey

    Department of Psychology, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Michael Shvartsman

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jordan L Poppenk

    Department of Psychology, Queen's University, Kingston, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3315-5098
  7. Uri Hasson

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Kenneth A Norman

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    For correspondence
    knorman@princeton.edu
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institutes of Health (Early Stage Investigator, R01-MH094480)

  • Uri Hasson

John Templeton Foundation (Proposal 36751)

  • Olga Lositsky
  • Kenneth A Norman

National Institutes of Health (Training Grant, 2T32MH065214)

  • Olga Lositsky
  • Janice Chen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Howard Eichenbaum, Boston University, United States

Ethics

Human subjects: All parts of the experimental procedure were approved by the Princeton Institutional Review Board under Protocol #5516. All participants were screened to ensure no neurological or psychiatric disorders. Written informed consent, and consent to publish, was obtained for all participants in accordance with the Princeton Institutional Review Board regulations.

Version history

  1. Received: March 16, 2016
  2. Accepted: October 17, 2016
  3. Accepted Manuscript published: November 1, 2016 (version 1)
  4. Version of Record published: January 13, 2017 (version 2)
  5. Version of Record updated: January 20, 2017 (version 3)

Copyright

© 2016, Lositsky et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,407
    views
  • 580
    downloads
  • 76
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Olga Lositsky
  2. Janice Chen
  3. Daniel Toker
  4. Christopher J Honey
  5. Michael Shvartsman
  6. Jordan L Poppenk
  7. Uri Hasson
  8. Kenneth A Norman
(2016)
Neural pattern change during encoding of a narrative predicts retrospective duration estimates
eLife 5:e16070.
https://doi.org/10.7554/eLife.16070

Share this article

https://doi.org/10.7554/eLife.16070

Further reading

    1. Immunology and Inflammation
    2. Neuroscience
    Nicolas Aubert, Madeleine Purcarea ... Gilles Marodon
    Research Article

    CD4+CD25+Foxp3+ regulatory T cells (Treg) have been implicated in pain modulation in various inflammatory conditions. However, whether Treg cells hamper pain at steady state and by which mechanism is still unclear. From a meta-analysis of the transcriptomes of murine Treg and conventional T cells (Tconv), we observe that the proenkephalin gene (Penk), encoding the precursor of analgesic opioid peptides, ranks among the top 25 genes most enriched in Treg cells. We then present various evidence suggesting that Penk is regulated in part by members of the Tumor Necrosis Factor Receptor (TNFR) family and the transcription factor Basic leucine zipper transcription faatf-like (BATF). Using mice in which the promoter activity of Penk can be tracked with a fluorescent reporter, we also show that Penk expression is mostly detected in Treg and activated Tconv in non-inflammatory conditions in the colon and skin. Functionally, Treg cells proficient or deficient for Penk suppress equally well the proliferation of effector T cells in vitro and autoimmune colitis in vivo. In contrast, inducible ablation of Penk in Treg leads to heat hyperalgesia in both male and female mice. Overall, our results indicate that Treg might play a key role at modulating basal somatic sensitivity in mice through the production of analgesic opioid peptides.

    1. Neuroscience
    James Malkin, Cian O'Donnell ... Laurence Aitchison
    Research Article

    Biological synaptic transmission is unreliable, and this unreliability likely degrades neural circuit performance. While there are biophysical mechanisms that can increase reliability, for instance by increasing vesicle release probability, these mechanisms cost energy. We examined four such mechanisms along with the associated scaling of the energetic costs. We then embedded these energetic costs for reliability in artificial neural networks (ANNs) with trainable stochastic synapses, and trained these networks on standard image classification tasks. The resulting networks revealed a tradeoff between circuit performance and the energetic cost of synaptic reliability. Additionally, the optimised networks exhibited two testable predictions consistent with pre-existing experimental data. Specifically, synapses with lower variability tended to have (1) higher input firing rates and (2) lower learning rates. Surprisingly, these predictions also arise when synapse statistics are inferred through Bayesian inference. Indeed, we were able to find a formal, theoretical link between the performance-reliability cost tradeoff and Bayesian inference. This connection suggests two incompatible possibilities: evolution may have chanced upon a scheme for implementing Bayesian inference by optimising energy efficiency, or alternatively, energy-efficient synapses may display signatures of Bayesian inference without actually using Bayes to reason about uncertainty.