Molecular dynamics-based renement and validation with Resolution Exchange MDFF for sub-5 Å cryo-electron microscopy maps
Abstract
Two structure determination methods, based on the molecular dynamics flexible fitting (MDFF) paradigm, are presented that resolve sub-5-Å cryo-electron microscopy (EM) maps with either single structures or ensembles of such structures. The methods, denoted cascade MDFF and resolution exchange MDFF, sequentially re-refine a search model against a series of maps of progressively higher resolutions, which ends with the original experimental resolution. Application of sequential re-refinement enables MDFF to achieve a convergence radius of ~25Å demonstrated with the accurate modeling of β-galactosidase and TRPV1 proteins at 3.2Å and 3.4Å resolution. The MDFF refinements uniquely offer map-model validation and B-factor determination criteria based on the inherent dynamics of the respective macromolecules studied, captured employing local root mean square fluctuations. The MDFF tools are made available to researchers through an easy-to-use and cost-effective cloud computing resource on Amazon Web Services.
Data availability
-
NIZN[FE4S4] AND NINI[FE4S4] CLUSTERS IN CLOSED AND OPEN ALPHA SUBUNITS OF ACETYL-COA SYNTHASE/CARBON MONOXIDE DEHYDROGENASEPublicly available at the Protien Data Bank (accession no. 1OAO).
-
Structure of TRPV1 ion channel determined by single particle electron cryo-microscopyPublicly available at the Protien Data Bank (accession no. 3J5P).
-
Structure of the capsaicin receptor, TRPV1, determined by single particle electron cryo-microscopyPublicly available at the EMDataBank (accesion no. EMD-5778).
-
2.2 A resolution cryo-EM structure of beta-galactosidase in complex with a cell-permeant inhibitorPublicly available at the Protien Data Bank (accession no. 5A1A).
-
2.2 A resolution cryo-EM structure of beta-galactosidase in complex with a cell-permeant inhibitorPublicly available at the EMDataBank (accesion no. EMD-2984).
-
Cryo-EM structure of the human gamma-secretase complex at 3.4 angstrom resolution.Publicly available at the Protien Data Bank (accession no. 5A63).
-
Cryo-EM structure of the human gamma-secretase complex at 3.4 angstrom resolutionPublicly available at the EMDataBank (accesion no. EMD-3061).
-
Structure of a extracellular domainPublicly available at the Protien Data Bank (accession no. 4UPC).
-
Three-dimensional structure of human gamma-secretase at 4.5 angstrom resolutionPublicly available at the EMDataBank (accesion no. EMD-2677).
-
Thermoplasma acidophilum 20S proteasomePublicly available at the Protien Data Bank (accession no. 3J9I).
-
3D reconstruction of archaeal 20S proteasomePublicly available at the EMDataBank (accesion no. EMD-5623).
-
Structure of beta-galactosidase at 3.2-A resolution obtained by cryo-electron microscopyPublicly available at the Protien Data Bank (accession no. 3J7H).
-
Structure of beta-galactosidase at 3.2-A resolution obtained by cryo-electron microscopyPublicly available at the EMDataBank (accesion no. EMD-5995).
Article and author information
Author details
Copyright
© 2016, singharoy et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 5,852
- views
-
- 1,101
- downloads
-
- 148
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Immunology and Inflammation
- Structural Biology and Molecular Biophysics
Increasing evidence suggests that mechanical load on the αβ T-cell receptor (TCR) is crucial for recognizing the antigenic peptide-bound major histocompatibility complex (pMHC) molecule. Our recent all-atom molecular dynamics (MD) simulations revealed that the inter-domain motion of the TCR is responsible for the load-induced catch bond behavior of the TCR-pMHC complex and peptide discrimination (Chang-Gonzalez et al., 2024). To further examine the generality of the mechanism, we perform all-atom MD simulations of the B7 TCR under different conditions for comparison with our previous simulations of the A6 TCR. The two TCRs recognize the same pMHC and have similar interfaces with pMHC in crystal structures. We find that the B7 TCR-pMHC interface stabilizes under ∼15 pN load using a conserved dynamic allostery mechanism that involves the asymmetric motion of the TCR chassis. However, despite forming comparable contacts with pMHC as A6 in the crystal structure, B7 has fewer high-occupancy contacts with pMHC and exhibits higher mechanical compliance during the simulation. These results indicate that the dynamic allostery common to the TCRαβ chassis can amplify slight differences in interfacial contacts into distinctive mechanical responses and nuanced biological outcomes.
-
- Plant Biology
- Structural Biology and Molecular Biophysics
The Calvin-Benson-Bassham cycle (CBBC) performs carbon fixation in photosynthetic organisms. Among the eleven enzymes that participate in the pathway, sedoheptulose-1,7-bisphosphatase (SBPase) is expressed in photo-autotrophs and catalyzes the hydrolysis of sedoheptulose-1,7-bisphosphate (SBP) to sedoheptulose-7-phosphate (S7P). SBPase, along with nine other enzymes in the CBBC, contributes to the regeneration of ribulose-1,5-bisphosphate, the carbon-fixing co-substrate used by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). The metabolic role of SBPase is restricted to the CBBC, and a recent study revealed that the three-dimensional structure of SBPase from the moss Physcomitrium patens was found to be similar to that of fructose-1,6-bisphosphatase (FBPase), an enzyme involved in both CBBC and neoglucogenesis. In this study we report the first structure of an SBPase from a chlorophyte, the model unicellular green microalga Chlamydomonas reinhardtii. By combining experimental and computational structural analyses, we describe the topology, conformations, and quaternary structure of Chlamydomonas reinhardtii SBPase (CrSBPase). We identify active site residues and locate sites of redox- and phospho-post-translational modifications that contribute to enzymatic functions. Finally, we observe that CrSBPase adopts distinct oligomeric states that may dynamically contribute to the control of its activity.