Molecular dynamics-based renement and validation with Resolution Exchange MDFF for sub-5 Å cryo-electron microscopy maps
Abstract
Two structure determination methods, based on the molecular dynamics flexible fitting (MDFF) paradigm, are presented that resolve sub-5-Å cryo-electron microscopy (EM) maps with either single structures or ensembles of such structures. The methods, denoted cascade MDFF and resolution exchange MDFF, sequentially re-refine a search model against a series of maps of progressively higher resolutions, which ends with the original experimental resolution. Application of sequential re-refinement enables MDFF to achieve a convergence radius of ~25Å demonstrated with the accurate modeling of β-galactosidase and TRPV1 proteins at 3.2Å and 3.4Å resolution. The MDFF refinements uniquely offer map-model validation and B-factor determination criteria based on the inherent dynamics of the respective macromolecules studied, captured employing local root mean square fluctuations. The MDFF tools are made available to researchers through an easy-to-use and cost-effective cloud computing resource on Amazon Web Services.
Data availability
-
NIZN[FE4S4] AND NINI[FE4S4] CLUSTERS IN CLOSED AND OPEN ALPHA SUBUNITS OF ACETYL-COA SYNTHASE/CARBON MONOXIDE DEHYDROGENASEPublicly available at the Protien Data Bank (accession no. 1OAO).
-
Structure of TRPV1 ion channel determined by single particle electron cryo-microscopyPublicly available at the Protien Data Bank (accession no. 3J5P).
-
Structure of the capsaicin receptor, TRPV1, determined by single particle electron cryo-microscopyPublicly available at the EMDataBank (accesion no. EMD-5778).
-
2.2 A resolution cryo-EM structure of beta-galactosidase in complex with a cell-permeant inhibitorPublicly available at the Protien Data Bank (accession no. 5A1A).
-
2.2 A resolution cryo-EM structure of beta-galactosidase in complex with a cell-permeant inhibitorPublicly available at the EMDataBank (accesion no. EMD-2984).
-
Cryo-EM structure of the human gamma-secretase complex at 3.4 angstrom resolution.Publicly available at the Protien Data Bank (accession no. 5A63).
-
Cryo-EM structure of the human gamma-secretase complex at 3.4 angstrom resolutionPublicly available at the EMDataBank (accesion no. EMD-3061).
-
Structure of a extracellular domainPublicly available at the Protien Data Bank (accession no. 4UPC).
-
Three-dimensional structure of human gamma-secretase at 4.5 angstrom resolutionPublicly available at the EMDataBank (accesion no. EMD-2677).
-
Thermoplasma acidophilum 20S proteasomePublicly available at the Protien Data Bank (accession no. 3J9I).
-
3D reconstruction of archaeal 20S proteasomePublicly available at the EMDataBank (accesion no. EMD-5623).
-
Structure of beta-galactosidase at 3.2-A resolution obtained by cryo-electron microscopyPublicly available at the Protien Data Bank (accession no. 3J7H).
-
Structure of beta-galactosidase at 3.2-A resolution obtained by cryo-electron microscopyPublicly available at the EMDataBank (accesion no. EMD-5995).
Article and author information
Author details
Copyright
© 2016, singharoy et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 5,816
- views
-
- 1,099
- downloads
-
- 144
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Biochemistry and Chemical Biology
- Structural Biology and Molecular Biophysics
Both immunoglobulin light-chain (LC) amyloidosis (AL) and multiple myeloma (MM) share the overproduction of a clonal LC. However, while LCs in MM remain soluble in circulation, AL LCs misfold into toxic-soluble species and amyloid fibrils that accumulate in organs, leading to distinct clinical manifestations. The significant sequence variability of LCs has hindered the understanding of the mechanisms driving LC aggregation. Nevertheless, emerging biochemical properties, including dimer stability, conformational dynamics, and proteolysis susceptibility, distinguish AL LCs from those in MM under native conditions. This study aimed to identify a2 conformational fingerprint distinguishing AL from MM LCs. Using small-angle X-ray scattering (SAXS) under native conditions, we analyzed four AL and two MM LCs. We observed that AL LCs exhibited a slightly larger radius of gyration and greater deviations from X-ray crystallography-determined or predicted structures, reflecting enhanced conformational dynamics. SAXS data, integrated with molecular dynamics simulations, revealed a conformational ensemble where LCs adopt multiple states, with variable and constant domains either bent or straight. AL LCs displayed a distinct, low-populated, straight conformation (termed H state), which maximized solvent accessibility at the interface between constant and variable domains. Hydrogen-deuterium exchange mass spectrometry experimentally validated this H state. These findings reconcile diverse experimental observations and provide a precise structural target for future drug design efforts.
-
- Structural Biology and Molecular Biophysics
PROteolysis TArgeting Chimeras (PROTACs) are small molecules that induce target protein degradation via the ubiquitin-proteasome system. PROTACs recruit the target protein and E3 ligase; a critical first step is forming a ternary complex. However, while the formation of a ternary complex is crucial, it may not always guarantee successful protein degradation. The dynamics of the PROTAC-induced degradation complex play a key role in ubiquitination and subsequent degradation. In this study, we computationally modelled protein complex structures and dynamics associated with a series of PROTACs featuring different linkers to investigate why these PROTACs, all of which formed ternary complexes with Cereblon (CRBN) E3 ligase and the target protein bromodomain-containing protein 4 (BRD4BD1), exhibited varying degrees of degradation potency. We constructed the degradation machinery complexes with Culling-Ring Ligase 4A (CRL4A) E3 ligase scaffolds. Through atomistic molecular dynamics simulations, we illustrated how PROTAC-dependent protein dynamics facilitating the arrangement of surface lysine residues of BRD4BD1 into the catalytic pocket of E2/ubiquitin cascade for ubiquitination. Despite featuring identical warheads in this PROTAC series, the linkers were found to affect the residue-interaction networks, and thus governing the essential motions of the entire degradation machine for ubiquitination. These findings offer a structural dynamic perspective on ligand-induced protein degradation, providing insights to guide future PROTAC design endeavors.