A Bayesian model of context-sensitive value attribution

  1. Francesco Rigoli  Is a corresponding author
  2. Karl J Friston
  3. Cristina Martinelli
  4. Mirjana Selaković
  5. Sukhwinder S Shergill
  6. Raymond J Dolan
  1. University College London, United Kingdom
  2. University College London, United Kingdom
  3. King's College London, United Kingdom
  4. Sismanogleio General Hospital, Greece

Abstract

Substantial evidence indicates that incentive value depends on an anticipation of rewards within a given context. However, the computations underlying this context sensitivity remain unknown. To address this question we introduce a normative (Bayesian) account of how rewards map to incentive values. This assumes that the brain inverts a model of how rewards are generated. Key features of our account include (i) an influence of prior beliefs about the context in which rewards are delivered (weighted by their reliability in a Bayes-optimal fashion), (ii) the notion that incentive values correspond to precision-weighted prediction errors, (iii) and contextual information unfolding at different hierarchical levels. This formulation implies that incentive value is intrinsically context-dependent. We provide empirical support for this model by showing that incentive value is influenced by context variability and by hierarchically nested contexts. The perspective we introduce generates new empirical predictions that might help explaining psychopathologies, such as addiction.

Article and author information

Author details

  1. Francesco Rigoli

    The Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom
    For correspondence
    f.rigoli@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  2. Karl J Friston

    The Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Cristina Martinelli

    Department of Psychosis Studies, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Mirjana Selaković

    Department of Psychiatry, Sismanogleio General Hospital, Athens, Greece
    Competing interests
    The authors declare that no competing interests exist.
  5. Sukhwinder S Shergill

    Department of Psychosis Studies, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Raymond J Dolan

    The Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Human subjects: Experiment one was approved by the University College London Research Ethics Committee. Experiment two was approved by the King's College of London Research Ethics Committee. All participants provided written informed consent and were paid for participating.

Copyright

© 2016, Rigoli et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

Share this article

https://doi.org/10.7554/eLife.16127

Further reading

    1. Neuroscience
    Jakob Rupert, Dragomir Milovanovic
    Insight

    By influencing calcium homeostasis, local protein synthesis and the endoplasmic reticulum, a small protein called Rab10 emerges as a crucial cytoplasmic regulator of neuropeptide secretion.

    1. Neuroscience
    Yi-Yun Ho, Qiuwei Yang ... Melissa R Warden
    Research Article

    The infralimbic cortex (IL) is essential for flexible behavioral responses to threatening environmental events. Reactive behaviors such as freezing or flight are adaptive in some contexts, but in others a strategic avoidance behavior may be more advantageous. IL has been implicated in avoidance, but the contribution of distinct IL neural subtypes with differing molecular identities and wiring patterns is poorly understood. Here, we study IL parvalbumin (PV) interneurons in mice as they engage in active avoidance behavior, a behavior in which mice must suppress freezing in order to move to safety. We find that activity in inhibitory PV neurons increases during movement to avoid the shock in this behavioral paradigm, and that PV activity during movement emerges after mice have experienced a single shock, prior to learning avoidance. PV neural activity does not change during movement toward cued rewards or during general locomotion in the open field, behavioral paradigms where freezing does not need to be suppressed to enable movement. Optogenetic suppression of PV neurons increases the duration of freezing and delays the onset of avoidance behavior, but does not affect movement toward rewards or general locomotion. These data provide evidence that IL PV neurons support strategic avoidance behavior by suppressing freezing.