A Bayesian model of context-sensitive value attribution

  1. Francesco Rigoli  Is a corresponding author
  2. Karl J Friston
  3. Cristina Martinelli
  4. Mirjana Selaković
  5. Sukhwinder S Shergill
  6. Raymond J Dolan
  1. University College London, United Kingdom
  2. University College London, United Kingdom
  3. King's College London, United Kingdom
  4. Sismanogleio General Hospital, Greece

Abstract

Substantial evidence indicates that incentive value depends on an anticipation of rewards within a given context. However, the computations underlying this context sensitivity remain unknown. To address this question we introduce a normative (Bayesian) account of how rewards map to incentive values. This assumes that the brain inverts a model of how rewards are generated. Key features of our account include (i) an influence of prior beliefs about the context in which rewards are delivered (weighted by their reliability in a Bayes-optimal fashion), (ii) the notion that incentive values correspond to precision-weighted prediction errors, (iii) and contextual information unfolding at different hierarchical levels. This formulation implies that incentive value is intrinsically context-dependent. We provide empirical support for this model by showing that incentive value is influenced by context variability and by hierarchically nested contexts. The perspective we introduce generates new empirical predictions that might help explaining psychopathologies, such as addiction.

Article and author information

Author details

  1. Francesco Rigoli

    The Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom
    For correspondence
    f.rigoli@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  2. Karl J Friston

    The Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Cristina Martinelli

    Department of Psychosis Studies, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Mirjana Selaković

    Department of Psychiatry, Sismanogleio General Hospital, Athens, Greece
    Competing interests
    The authors declare that no competing interests exist.
  5. Sukhwinder S Shergill

    Department of Psychosis Studies, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Raymond J Dolan

    The Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Sam Gershman

Ethics

Human subjects: Experiment one was approved by the University College London Research Ethics Committee. Experiment two was approved by the King's College of London Research Ethics Committee. All participants provided written informed consent and were paid for participating.

Version history

  1. Received: March 16, 2016
  2. Accepted: June 16, 2016
  3. Accepted Manuscript published: June 21, 2016 (version 1)
  4. Version of Record published: July 18, 2016 (version 2)

Copyright

© 2016, Rigoli et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,145
    views
  • 450
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Francesco Rigoli
  2. Karl J Friston
  3. Cristina Martinelli
  4. Mirjana Selaković
  5. Sukhwinder S Shergill
  6. Raymond J Dolan
(2016)
A Bayesian model of context-sensitive value attribution
eLife 5:e16127.
https://doi.org/10.7554/eLife.16127

Share this article

https://doi.org/10.7554/eLife.16127

Further reading

    1. Neuroscience
    Wenyu Tu, Samuel R Cramer, Nanyin Zhang
    Research Article

    Resting-state brain networks (RSNs) have been widely applied in health and disease, but the interpretation of RSNs in terms of the underlying neural activity is unclear. To address this fundamental question, we conducted simultaneous recordings of whole-brain resting-state functional magnetic resonance imaging (rsfMRI) and electrophysiology signals in two separate brain regions of rats. Our data reveal that for both recording sites, spatial maps derived from band-specific local field potential (LFP) power can account for up to 90% of the spatial variability in RSNs derived from rsfMRI signals. Surprisingly, the time series of LFP band power can only explain to a maximum of 35% of the temporal variance of the local rsfMRI time course from the same site. In addition, regressing out time series of LFP power from rsfMRI signals has minimal impact on the spatial patterns of rsfMRI-based RSNs. This disparity in the spatial and temporal relationships between resting-state electrophysiology and rsfMRI signals suggests that electrophysiological activity alone does not fully explain the effects observed in the rsfMRI signal, implying the existence of an rsfMRI component contributed by ‘electrophysiology-invisible’ signals. These findings offer a novel perspective on our understanding of RSN interpretation.

    1. Cell Biology
    2. Neuroscience
    Georg Kislinger, Gunar Fabig ... Martina Schifferer
    Tools and Resources

    Like other volume electron microscopy approaches, automated tape-collecting ultramicrotomy (ATUM) enables imaging of serial sections deposited on thick plastic tapes by scanning electron microscopy (SEM). ATUM is unique in enabling hierarchical imaging and thus efficient screening for target structures, as needed for correlative light and electron microscopy. However, SEM of sections on tape can only access the section surface, thereby limiting the axial resolution to the typical size of cellular vesicles with an order of magnitude lower than the acquired xy resolution. In contrast, serial-section electron tomography (ET), a transmission electron microscopy-based approach, yields isotropic voxels at full EM resolution, but requires deposition of sections on electron-stable thin and fragile films, thus making screening of large section libraries difficult and prone to section loss. To combine the strength of both approaches, we developed ‘ATUM-Tomo, a hybrid method, where sections are first reversibly attached to plastic tape via a dissolvable coating, and after screening detached and transferred to the ET-compatible thin films. As a proof-of-principle, we applied correlative ATUM-Tomo to study ultrastructural features of blood-brain barrier (BBB) leakiness around microthrombi in a mouse model of traumatic brain injury. Microthrombi and associated sites of BBB leakiness were identified by confocal imaging of injected fluorescent and electron-dense nanoparticles, then relocalized by ATUM-SEM, and finally interrogated by correlative ATUM-Tomo. Overall, our new ATUM-Tomo approach will substantially advance ultrastructural analysis of biological phenomena that require cell- and tissue-level contextualization of the finest subcellular textures.