Mia40 is a trans-site receptor that drives protein import into the mitochondrial intermembrane space by hydrophobic substrate binding

  1. Valentina Peleh
  2. Emmanuelle Cordat
  3. Johannes M Herrmann  Is a corresponding author
  1. University of Kaiserslautern, Germany
  2. University of Alberta, Canada

Abstract

Many proteins of the mitochondrial IMS contain conserved cysteines that are oxidized to disulfide bonds during their import. The conserved IMS protein Mia40 is essential for the oxidation and import of these proteins. Mia40 consists of two functional elements: an N-terminal cysteine-proline-cysteine motif conferring substrate oxidation, and a C-terminal hydrophobic pocket for substrate binding. In this study, we generated yeast mutants to dissect both Mia40 activities genetically and biochemically. Thereby we show that the substrate-binding domain of Mia40 is both necessary and sufficient to promote protein import, indicating that trapping by Mia40 drives protein translocation. An oxidase-deficient Mia40 mutant is inviable, but can be partially rescued by addition of the chemical oxidant diamide. Our results indicate that Mia40 predominantly serves as trans-site receptor of mitochondria that binds incoming proteins via hydrophobic interactions thereby mediating protein translocation across the outer membrane by a 'holding trap' rather than a 'folding trap' mechanism.

Article and author information

Author details

  1. Valentina Peleh

    Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Emmanuelle Cordat

    Department of Physiology, University of Alberta, Edmonton, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Johannes M Herrmann

    Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
    For correspondence
    hannes.herrmann@biologie.uni-kl.de
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2016, Peleh et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,393
    views
  • 442
    downloads
  • 62
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Valentina Peleh
  2. Emmanuelle Cordat
  3. Johannes M Herrmann
(2016)
Mia40 is a trans-site receptor that drives protein import into the mitochondrial intermembrane space by hydrophobic substrate binding
eLife 5:e16177.
https://doi.org/10.7554/eLife.16177

Share this article

https://doi.org/10.7554/eLife.16177

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Kristina Ehring, Sophia Friederike Ehlers ... Kay Grobe
    Research Article

    The Sonic hedgehog (Shh) signaling pathway controls embryonic development and tissue homeostasis after birth. This requires regulated solubilization of dual-lipidated, firmly plasma membrane-associated Shh precursors from producing cells. Although it is firmly established that the resistance-nodulation-division transporter Dispatched (Disp) drives this process, it is less clear how lipidated Shh solubilization from the plasma membrane is achieved. We have previously shown that Disp promotes proteolytic solubilization of Shh from its lipidated terminal peptide anchors. This process, termed shedding, converts tightly membrane-associated hydrophobic Shh precursors into delipidated soluble proteins. We show here that Disp-mediated Shh shedding is modulated by a serum factor that we identify as high-density lipoprotein (HDL). In addition to serving as a soluble sink for free membrane cholesterol, HDLs also accept the cholesterol-modified Shh peptide from Disp. The cholesteroylated Shh peptide is necessary and sufficient for Disp-mediated transfer because artificially cholesteroylated mCherry associates with HDL in a Disp-dependent manner, whereas an N-palmitoylated Shh variant lacking C-cholesterol does not. Disp-mediated Shh transfer to HDL is completed by proteolytic processing of the palmitoylated N-terminal membrane anchor. In contrast to dual-processed soluble Shh with moderate bioactivity, HDL-associated N-processed Shh is highly bioactive. We propose that the purpose of generating different soluble forms of Shh from the dual-lipidated precursor is to tune cellular responses in a tissue-type and time-specific manner.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Gina Partipilo, Yang Gao ... Benjamin K Keitz
    Feature Article

    Troubleshooting is an important part of experimental research, but graduate students rarely receive formal training in this skill. In this article, we describe an initiative called Pipettes and Problem Solving that we developed to teach troubleshooting skills to graduate students at the University of Texas at Austin. An experienced researcher presents details of a hypothetical experiment that has produced unexpected results, and students have to propose new experiments that will help identify the source of the problem. We also provide slides and other resources that can be used to facilitate problem solving and teach troubleshooting skills at other institutions.