A new motor synergy that serves the needs of oculomotor and eye lid systems while keeping the downtime of vision minimal

Abstract

The purpose of blinks is to keep the eyes hydrated and to protect them. Blinks are rarely noticed by the subject as blink-induced alterations of visual input are blanked out without jeopardizing the perception of visual continuity, features blinks share with saccades. Although not perceived, the blink-induced disconnection from the visual environment leads to a loss of information. Therefore there is critical need to minimize it. Here we demonstrate evidence for a new type of eye movement serving a distinct oculomotor demand, namely the resetting of eye torsion, likewise inevitably causing a loss of visual information. By integrating this eye movement into blinks, the inevitable down times of vision associated with each of the two behaviors are synchronized and the overall downtime minimized.

Article and author information

Author details

  1. Mohammad Farhan Khazali

    Department of Cognitive Neurology, University of Tübingen, Tübingen, Germany
    For correspondence
    mohammad.khazali@student.uni-tuebingen.de
    Competing interests
    The authors declare that no competing interests exist.
  2. Joern K Pomper

    Department of Cognitive Neurology, University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Aleksandra Smilgin

    Department of Cognitive Neurology, University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Friedemann Bunjes

    Department of Cognitive Neurology, University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Peter Thier

    Department of Cognitive Neurology, University of Tübingen, Tübingen, Germany
    For correspondence
    thier@uni-tuebingen.de
    Competing interests
    The authors declare that no competing interests exist.

Funding

No external funding was received for this work.

Ethics

Human subjects: All subjects gave written informed consent and consent to publication according to the declaration of Helsinki prior to the experiment. The study was approved by the ethics committee of the University of Tuebingen.

Copyright

© 2016, Khazali et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,254
    views
  • 371
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mohammad Farhan Khazali
  2. Joern K Pomper
  3. Aleksandra Smilgin
  4. Friedemann Bunjes
  5. Peter Thier
(2016)
A new motor synergy that serves the needs of oculomotor and eye lid systems while keeping the downtime of vision minimal
eLife 5:e16290.
https://doi.org/10.7554/eLife.16290

Share this article

https://doi.org/10.7554/eLife.16290

Further reading

    1. Neuroscience
    Natalia Mendes, Ariane Zanesco ... Licio A Velloso
    Research Article

    Microgliosis plays a critical role in diet-induced hypothalamic inflammation. A few hours after a high-fat diet (HFD), hypothalamic microglia shift to an inflammatory phenotype, and prolonged fat consumption leads to the recruitment of bone marrow-derived cells to the hypothalamus. However, the transcriptional signatures and functions of these cells remain unclear. Using dual-reporter mice, this study reveals that CX3CR1-positive microglia exhibit minimal changes in response to a HFD, while significant transcriptional differences emerge between microglia and CCR2-positive recruited myeloid cells, particularly affecting chemotaxis. These recruited cells also show sex-specific transcriptional differences impacting neurodegeneration and thermogenesis. The chemokine receptor CXCR3 is emphasized for its role in chemotaxis, displaying notable differences between recruited cells and resident microglia, requiring further investigation. Central immunoneutralization of CXCL10, a ligand for CXCR3, resulted in increased body mass and decreased energy expenditure, especially in females. Systemic chemical inhibition of CXCR3 led to significant metabolic changes, including increased body mass, reduced energy expenditure, elevated blood leptin, glucose intolerance, and decreased insulin levels. This study elucidates the transcriptional differences between hypothalamic microglia and CCR2-positive recruited myeloid cells in diet-induced inflammation and identifies CXCR3-expressing recruited immune cells as protective in metabolic outcomes linked to HFD consumption, establishing a new concept in obesity-related hypothalamic inflammation.

    1. Neuroscience
    J Wesley Maddox, Gregory J Ordemann ... Amy Lee
    Research Article

    In congenital stationary night blindness, type 2 (CSNB2)—a disorder involving the Cav1.4 (L-type) Ca2+ channel—visual impairment is mild considering that Cav1.4 mediates synaptic release from rod and cone photoreceptors. Here, we addressed this conundrum using a Cav1.4 knockout (KO) mouse and a knock-in (G369i KI) mouse expressing a non-conducting Cav1.4. Surprisingly, Cav3 (T-type) Ca2+ currents were detected in cones of G369i KI mice and Cav1.4 KO mice but not in cones of wild-type mouse, ground squirrels, and macaque retina. Whereas Cav1.4 KO mice are blind, G369i KI mice exhibit normal photopic (i.e. cone-mediated) visual behavior. Cone synapses, which fail to form in Cav1.4 KO mice, are present, albeit enlarged, and with some errors in postsynaptic wiring in G369i KI mice. While Cav1.4 KO mice lack evidence of cone synaptic responses, electrophysiological recordings in G369i KI mice revealed nominal transmission from cones to horizontal cells and bipolar cells. In CSNB2, we propose that Cav3 channels maintain cone synaptic output provided that the nonconducting role of Cav1.4 in cone synaptogenesis remains intact. Our findings reveal an unexpected form of homeostatic plasticity that relies on a non-canonical role of an ion channel.