A new motor synergy that serves the needs of oculomotor and eye lid systems while keeping the downtime of vision minimal

Abstract

The purpose of blinks is to keep the eyes hydrated and to protect them. Blinks are rarely noticed by the subject as blink-induced alterations of visual input are blanked out without jeopardizing the perception of visual continuity, features blinks share with saccades. Although not perceived, the blink-induced disconnection from the visual environment leads to a loss of information. Therefore there is critical need to minimize it. Here we demonstrate evidence for a new type of eye movement serving a distinct oculomotor demand, namely the resetting of eye torsion, likewise inevitably causing a loss of visual information. By integrating this eye movement into blinks, the inevitable down times of vision associated with each of the two behaviors are synchronized and the overall downtime minimized.

Article and author information

Author details

  1. Mohammad Farhan Khazali

    Department of Cognitive Neurology, University of Tübingen, Tübingen, Germany
    For correspondence
    mohammad.khazali@student.uni-tuebingen.de
    Competing interests
    The authors declare that no competing interests exist.
  2. Joern K Pomper

    Department of Cognitive Neurology, University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Aleksandra Smilgin

    Department of Cognitive Neurology, University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Friedemann Bunjes

    Department of Cognitive Neurology, University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Peter Thier

    Department of Cognitive Neurology, University of Tübingen, Tübingen, Germany
    For correspondence
    thier@uni-tuebingen.de
    Competing interests
    The authors declare that no competing interests exist.

Funding

No external funding was received for this work.

Reviewing Editor

  1. Jennifer L Raymond, Stanford University, United States

Ethics

Human subjects: All subjects gave written informed consent and consent to publication according to the declaration of Helsinki prior to the experiment. The study was approved by the ethics committee of the University of Tuebingen.

Version history

  1. Received: March 22, 2016
  2. Accepted: August 5, 2016
  3. Accepted Manuscript published: August 23, 2016 (version 1)
  4. Accepted Manuscript updated: August 25, 2016 (version 2)
  5. Version of Record published: September 6, 2016 (version 3)

Copyright

© 2016, Khazali et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,234
    views
  • 368
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mohammad Farhan Khazali
  2. Joern K Pomper
  3. Aleksandra Smilgin
  4. Friedemann Bunjes
  5. Peter Thier
(2016)
A new motor synergy that serves the needs of oculomotor and eye lid systems while keeping the downtime of vision minimal
eLife 5:e16290.
https://doi.org/10.7554/eLife.16290

Share this article

https://doi.org/10.7554/eLife.16290

Further reading

    1. Neuroscience
    Songyao Zhang, Tuo Zhang ... Tianming Liu
    Research Article

    Cortical folding is an important feature of primate brains that plays a crucial role in various cognitive and behavioral processes. Extensive research has revealed both similarities and differences in folding morphology and brain function among primates including macaque and human. The folding morphology is the basis of brain function, making cross-species studies on folding morphology important for understanding brain function and species evolution. However, prior studies on cross-species folding morphology mainly focused on partial regions of the cortex instead of the entire brain. Previously, our research defined a whole-brain landmark based on folding morphology: the gyral peak. It was found to exist stably across individuals and ages in both human and macaque brains. Shared and unique gyral peaks in human and macaque are identified in this study, and their similarities and differences in spatial distribution, anatomical morphology, and functional connectivity were also dicussed.

    1. Neuroscience
    Avani Koparkar, Timothy L Warren ... Lena Veit
    Research Article

    Complex skills like speech and dance are composed of ordered sequences of simpler elements, but the neuronal basis for the syntactic ordering of actions is poorly understood. Birdsong is a learned vocal behavior composed of syntactically ordered syllables, controlled in part by the songbird premotor nucleus HVC (proper name). Here, we test whether one of HVC’s recurrent inputs, mMAN (medial magnocellular nucleus of the anterior nidopallium), contributes to sequencing in adult male Bengalese finches (Lonchura striata domestica). Bengalese finch song includes several patterns: (1) chunks, comprising stereotyped syllable sequences; (2) branch points, where a given syllable can be followed probabilistically by multiple syllables; and (3) repeat phrases, where individual syllables are repeated variable numbers of times. We found that following bilateral lesions of mMAN, acoustic structure of syllables remained largely intact, but sequencing became more variable, as evidenced by ‘breaks’ in previously stereotyped chunks, increased uncertainty at branch points, and increased variability in repeat numbers. Our results show that mMAN contributes to the variable sequencing of vocal elements in Bengalese finch song and demonstrate the influence of recurrent projections to HVC. Furthermore, they highlight the utility of species with complex syntax in investigating neuronal control of ordered sequences.