ESCRT-III drives the final stages of CUPS maturation for unconventional protein secretion

  1. Amy J Curwin
  2. Nathalie Brouwers
  3. Manuel Alonso Y Adell
  4. David Teis
  5. Gabriele Turacchio
  6. Seetharaman Parashuraman
  7. Paolo Ronchi
  8. Vivek Malhotra  Is a corresponding author
  1. Barcelona Institute of Science and Technology, Spain
  2. The Barcelona Institute of Science and Technology, Spain
  3. Medical University of Innsbruck, Austria
  4. National Research Council of Italy, Italy
  5. European Molecular Biology Laboratory, Germany

Abstract

The unconventional secretory pathway exports proteins that bypass the endoplasmic reticulum. In Saccharomyces cerevisiae, conditions that trigger Acb1 secretion via this pathway generate a Grh1 containing compartment composed of vesicles and tubules surrounded by a cup-shaped membrane and collectively called CUPS. Here we report a quantitative assay for Acb1 secretion that reveals requirements for ESCRT-I, -II, and -III but, surprisingly, without the involvement of the Vps4 AAA-ATPase. The major ESCRT-III subunit Snf7 localizes transiently to CUPS and this was accelerated in vps4Δ cells, correlating with increased Acb1 secretion. Microscopic analysis suggests that, instead of forming intraluminal vesicles with the help of Vps4, ESCRT-III/Snf7 promotes direct engulfment of preexisting Grh1 containing vesicles and tubules into a saccule to generate a mature Acb1 containing compartment. This novel multivesicular / multilamellar compartment, we suggest represents the stable secretory form of CUPS that is competent for the release of Acb1 to cells exterior.

Article and author information

Author details

  1. Amy J Curwin

    Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
    Competing interests
    No competing interests declared.
  2. Nathalie Brouwers

    Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
    Competing interests
    No competing interests declared.
  3. Manuel Alonso Y Adell

    Division of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
    Competing interests
    No competing interests declared.
  4. David Teis

    Division of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
    Competing interests
    No competing interests declared.
  5. Gabriele Turacchio

    Institute of Protein Biochemistry, National Research Council of Italy, Naples, Italy
    Competing interests
    No competing interests declared.
  6. Seetharaman Parashuraman

    Institute of Protein Biochemistry, National Research Council of Italy, Naples, Italy
    Competing interests
    No competing interests declared.
  7. Paolo Ronchi

    Electron Microscopy Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
    Competing interests
    No competing interests declared.
  8. Vivek Malhotra

    Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
    For correspondence
    vivek.malhotra@crg.eu
    Competing interests
    Vivek Malhotra, Senior editor, eLife.

Reviewing Editor

  1. Randy Schekman, Howard Hughes Medical Institute, University of California, Berkeley, United States

Version history

  1. Received: March 23, 2016
  2. Accepted: April 25, 2016
  3. Accepted Manuscript published: April 26, 2016 (version 1)
  4. Accepted Manuscript updated: April 27, 2016 (version 2)
  5. Version of Record published: May 16, 2016 (version 3)

Copyright

© 2016, Curwin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,278
    views
  • 787
    downloads
  • 43
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Amy J Curwin
  2. Nathalie Brouwers
  3. Manuel Alonso Y Adell
  4. David Teis
  5. Gabriele Turacchio
  6. Seetharaman Parashuraman
  7. Paolo Ronchi
  8. Vivek Malhotra
(2016)
ESCRT-III drives the final stages of CUPS maturation for unconventional protein secretion
eLife 5:e16299.
https://doi.org/10.7554/eLife.16299

Share this article

https://doi.org/10.7554/eLife.16299

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Lucie Crhak Khaitova, Pavlina Mikulkova ... Karel Riha
    Research Article

    Heat stress is a major threat to global crop production, and understanding its impact on plant fertility is crucial for developing climate-resilient crops. Despite the known negative effects of heat stress on plant reproduction, the underlying molecular mechanisms remain poorly understood. Here, we investigated the impact of elevated temperature on centromere structure and chromosome segregation during meiosis in Arabidopsis thaliana. Consistent with previous studies, heat stress leads to a decline in fertility and micronuclei formation in pollen mother cells. Our results reveal that elevated temperature causes a decrease in the amount of centromeric histone and the kinetochore protein BMF1 at meiotic centromeres with increasing temperature. Furthermore, we show that heat stress increases the duration of meiotic divisions and prolongs the activity of the spindle assembly checkpoint during meiosis I, indicating an impaired efficiency of the kinetochore attachments to spindle microtubules. Our analysis of mutants with reduced levels of centromeric histone suggests that weakened centromeres sensitize plants to elevated temperature, resulting in meiotic defects and reduced fertility even at moderate temperatures. These results indicate that the structure and functionality of meiotic centromeres in Arabidopsis are highly sensitive to heat stress, and suggest that centromeres and kinetochores may represent a critical bottleneck in plant adaptation to increasing temperatures.

    1. Cell Biology
    Wan-ping Yang, Mei-qi Li ... Qian-qian Luo
    Research Article

    High-altitude polycythemia (HAPC) affects individuals living at high altitudes, characterized by increased red blood cells (RBCs) production in response to hypoxic conditions. The exact mechanisms behind HAPC are not fully understood. We utilized a mouse model exposed to hypobaric hypoxia (HH), replicating the environmental conditions experienced at 6000 m above sea level, coupled with in vitro analysis of primary splenic macrophages under 1% O2 to investigate these mechanisms. Our findings indicate that HH significantly boosts erythropoiesis, leading to erythrocytosis and splenic changes, including initial contraction to splenomegaly over 14 days. A notable decrease in red pulp macrophages (RPMs) in the spleen, essential for RBCs processing, was observed, correlating with increased iron release and signs of ferroptosis. Prolonged exposure to hypoxia further exacerbated these effects, mirrored in human peripheral blood mononuclear cells. Single-cell sequencing showed a marked reduction in macrophage populations, affecting the spleen’s ability to clear RBCs and contributing to splenomegaly. Our findings suggest splenic ferroptosis contributes to decreased RPMs, affecting erythrophagocytosis and potentially fostering continuous RBCs production in HAPC. These insights could guide the development of targeted therapies for HAPC, emphasizing the importance of splenic macrophages in disease pathology.