1. Structural Biology and Molecular Biophysics
  2. Neuroscience
Download icon

Engineering vanilloid-sensitivity into the rat TRPV2 channel

  1. Feng Zhang
  2. Sonya M Hanson
  3. Andres Jara-Oseguera
  4. Dmitriy Krepkiy
  5. Chanhyung Bae
  6. Larry V Pearce
  7. Peter M Blumberg
  8. Simon Newstead
  9. Kenton J Swartz  Is a corresponding author
  1. National Institutes of Health, United States
  2. Memorial Sloan Kettering Cancer Center, United States
  3. National Cancer Institute, United States
  4. University of Oxford, United Kingdom
Research Article
  • Cited 36
  • Views 2,277
  • Annotations
Cite this article as: eLife 2016;5:e16409 doi: 10.7554/eLife.16409

Abstract

The TRPV1 channel is a detector of noxious stimuli, including heat, acidosis, vanilloid compounds and lipids. The gating mechanisms of the related TRPV2 channel are poorly understood because selective high affinity ligands are not available, and the threshold for heat activation is extremely high (> 50 {degree sign}C). Cryo-EM structures of TRPV1 and TRPV2 reveal that they adopt similar structures, and identify a putative vanilloid binding pocket near the internal side of TRPV1. Here we use biochemical and electrophysiological approaches to investigate the resiniferatoxin (RTx) binding site in TRPV1 and to explore the functional relationships between TRPV1 and TRPV2. Collectively, our results support the interaction of vanilloids with the proposed RTx binding pocket, and demonstrate an allosteric influence of a tarantula toxin on vanilloid binding. Moreover, we show that sensitivity to RTx can be engineered into TRPV2, demonstrating that the gating and permeation properties of this channel are similar to TRPV1.

Article and author information

Author details

  1. Feng Zhang

    Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
    Competing interests
    No competing interests declared.
  2. Sonya M Hanson

    Computational Biology Program, Memorial Sloan Kettering Cancer Center, Bethesda, United States
    Competing interests
    No competing interests declared.
  3. Andres Jara-Oseguera

    Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
    Competing interests
    No competing interests declared.
  4. Dmitriy Krepkiy

    Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
    Competing interests
    No competing interests declared.
  5. Chanhyung Bae

    Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
    Competing interests
    No competing interests declared.
  6. Larry V Pearce

    Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, United States
    Competing interests
    No competing interests declared.
  7. Peter M Blumberg

    Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, United States
    Competing interests
    No competing interests declared.
  8. Simon Newstead

    Department of Biochemistry, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  9. Kenton J Swartz

    Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
    For correspondence
    swartzk@ninds.nih.gov
    Competing interests
    Kenton J Swartz, Reviewing editor, eLife.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocol (#1253-15) of the National Institute of Neurological Disorders and Stroke.

Reviewing Editor

  1. Indira M Raman, Northwestern University, United States

Publication history

  1. Received: March 26, 2016
  2. Accepted: May 12, 2016
  3. Accepted Manuscript published: May 13, 2016 (version 1)
  4. Version of Record published: June 14, 2016 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,277
    Page views
  • 638
    Downloads
  • 36
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Carolina Franco Nitta et al.
    Research Article

    Crosstalk between different receptor tyrosine kinases (RTKs) is thought to drive oncogenic signaling and allow therapeutic escape. EGFR and RON are two such RTKs from different subfamilies, which engage in crosstalk through unknown mechanisms. We combined high-resolution imaging with biochemical and mutational studies to ask how EGFR and RON communicate. EGF stimulation promotes EGFR-dependent phosphorylation of RON, but ligand stimulation of RON does not trigger EGFR phosphorylation – arguing that crosstalk is unidirectional. Nanoscale imaging reveals association of EGFR and RON in common plasma membrane microdomains. Two-color single particle tracking captured formation of complexes between RON and EGF-bound EGFR. Our results further show that RON is a substrate for EGFR kinase, and that transactivation of RON requires formation of a signaling competent EGFR dimer. These results support a role for direct EGFR/RON interactions in propagating crosstalk, such that EGF-stimulated EGFR phosphorylates RON to activate RON-directed signaling.

    1. Structural Biology and Molecular Biophysics
    Shan Zhou et al.
    Research Article

    Pathogenic mycobacteria pose a sustained threat to global human health. Recently, cytochrome bcc complexes have gained interest as targets for antibiotic drug development. However, there is currently no structural information for the cytochrome bcc complex from these pathogenic mycobacteria. Here, we report the structures of Mycobacterium tuberculosis cytochrome bcc alone (2.68 Å resolution) and in complex with clinical drug candidates Q203 (2.67 Å resolution) and TB47 (2.93 Å resolution) determined by single-particle cryo-electron microscopy. M. tuberculosis cytochrome bcc forms a dimeric assembly with endogenous menaquinone/menaquinol bound at the quinone/quinol-binding pockets. We observe Q203 and TB47 bound at the quinol-binding site and stabilized by hydrogen bonds with the side chains of QcrBThr313 and QcrBGlu314, residues that are conserved across pathogenic mycobacteria. These high-resolution images provide a basis for the design of new mycobacterial cytochrome bcc inhibitors that could be developed into broad-spectrum drugs to treat mycobacterial infections.