1. Cancer Biology
Download icon

Interferon Alpha-Inducible Protein 6 regulates NRASQ61K-induced melanomagenesis and growth

  1. Romi Gupta
  2. Matteo Forloni
  3. Malik Bisseier
  4. Shaillay Kumar Dogra
  5. Qiahong Yang
  6. Narendra Wajapeyee  Is a corresponding author
  1. Yale University School of Medicine, United States
  2. Agency for Science Technology and Research, Singapore
Research Article
  • Cited 6
  • Views 1,454
  • Annotations
Cite this article as: eLife 2016;5:e16432 doi: 10.7554/eLife.16432

Abstract

Mutations in the NRAS oncogene are present in up to 20% of melanoma. Here, we show that interferon alpha-inducible protein 6 (IFI6) is necessary for NRASQ61K-induced transformation and melanoma growth. IFI6 was transcriptionally upregulated by NRASQ61K, and knockdown of IFI6 resulted in DNA replication stress due to dysregulated DNA replication via E2F2. This stress consequentially inhibited cellular transformation and melanoma growth via senescence or apoptosis induction depending on the RB and p53 pathway status of the cells. NRAS-mutant melanoma were significantly more resistant to the cytotoxic effects of DNA replication stress-inducing drugs, and knockdown of IFI6 increased sensitivity to these drugs. Pharmacological inhibition of IFI6 expression by the MEK inhibitor trametinib, when combined with DNA replication stress-inducing drugs, blocked NRAS-mutant melanoma growth. Collectively, we demonstrate that IFI6, via E2F2 regulates DNA replication and melanoma development and growth, and this pathway can be pharmacologically targeted to inhibit NRAS-mutant melanoma.

Article and author information

Author details

  1. Romi Gupta

    Department of Pathology, Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Matteo Forloni

    Department of Pathology, Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Malik Bisseier

    Department of Pathology, Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Shaillay Kumar Dogra

    Singapore Institute of Clinical Sciences, Agency for Science Technology and Research, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  5. Qiahong Yang

    Department of Pathology, Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Narendra Wajapeyee

    Department of Pathology, Yale University School of Medicine, New Haven, United States
    For correspondence
    narendra.wajapeyee@yale.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3306-349X

Funding

National Institutes of Health (R01CA200919)

  • Narendra Wajapeyee

National Institutes of Health (R21CA195077-01A1)

  • Narendra Wajapeyee

National Institutes of Health (R21CA191364-01)

  • Narendra Wajapeyee

National Institutes of Health (R21CA197758-01)

  • Narendra Wajapeyee

Melanoma Research Alliance (Pilot grant award)

  • Narendra Wajapeyee

National Institutes of Health (R01CA196566)

  • Narendra Wajapeyee

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols of the Yale University (IACUC protocol #2016-11333).

Reviewing Editor

  1. Joaquín M Espinosa, University of Colorado School of Medicine, United States

Publication history

  1. Received: March 28, 2016
  2. Accepted: September 7, 2016
  3. Accepted Manuscript published: September 8, 2016 (version 1)
  4. Version of Record published: September 21, 2016 (version 2)

Copyright

© 2016, Gupta et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,454
    Page views
  • 296
    Downloads
  • 6
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cancer Biology
    2. Genetics and Genomics
    Iris E Glykofridis et al.
    Research Article Updated

    Germline mutations in the Folliculin (FLCN) tumor suppressor gene cause Birt–Hogg–Dubé (BHD) syndrome, a rare autosomal dominant disorder predisposing carriers to kidney tumors. FLCN is a conserved, essential gene linked to diverse cellular processes but the mechanism by which FLCN prevents kidney cancer remains unknown. Here, we show that disrupting FLCN in human renal tubular epithelial cells (RPTEC/TERT1) activates TFE3, upregulating expression of its E-box targets, including RRAGD and GPNMB, without modifying mTORC1 activity. Surprisingly, the absence of FLCN or its binding partners FNIP1/FNIP2 induces interferon response genes independently of interferon. Mechanistically, FLCN loss promotes STAT2 recruitment to chromatin and slows cellular proliferation. Our integrated analysis identifies STAT1/2 signaling as a novel target of FLCN in renal cells and BHD tumors. STAT1/2 activation appears to counterbalance TFE3-directed hyper-proliferation and may influence immune responses. These findings shed light on unique roles of FLCN in human renal tumorigenesis and pinpoint candidate prognostic biomarkers.

    1. Cancer Biology
    2. Immunology and Inflammation
    Giulia Vanoni et al.
    Research Article Updated

    Innate lymphoid cells (ILCs) represent the most recently identified subset of effector lymphocytes, with key roles in the orchestration of early immune responses. Despite their established involvement in the pathogenesis of many inflammatory disorders, the role of ILCs in cancer remains poorly defined. Here we assessed whether human ILCs can actively interact with the endothelium to promote tumor growth control, favoring immune cell adhesion. We show that, among all ILC subsets, ILCPs elicited the strongest upregulation of adhesion molecules in endothelial cells (ECs) in vitro, mainly in a contact-dependent manner through the tumor necrosis factor receptor- and RANK-dependent engagement of the NF-κB pathway. Moreover, the ILCP-mediated activation of the ECs resulted to be functional by fostering the adhesion of other innate and adaptive immune cells. Interestingly, pre-exposure of ILCPs to human tumor cell lines strongly impaired this capacity. Hence, the ILCP–EC interaction might represent an attractive target to regulate the immune cell trafficking to tumor sites and, therefore, the establishment of an anti-tumor immune response.