Stochastic and deterministic dynamics of intrinsically irregular firing in cortical inhibitory interneurons

  1. Philipe RF Mendonça
  2. Mariana Vargas-Caballero
  3. Ferenc Erdélyi
  4. Gábor Szabó
  5. Ole Paulsen
  6. Hugh PC Robinson  Is a corresponding author
  1. University of Cambridge, United Kingdom
  2. University of Southampton, United Kingdom
  3. Institute of Experimental Medicine, Hungary

Abstract

Most cortical neurons fire regularly when excited by a constant stimulus. In contrast, irregular-spiking (IS) interneurons are remarkable for the intrinsic variability of their spike timing, which can synchronize amongst IS cells via specific gap junctions. Here, we have studied the biophysical mechanisms of this irregular spiking in mice, and how IS cells fire in the context of synchronous network oscillations. Using patch-clamp recordings, artificial dynamic conductance injection, pharmacological analysis and computational modelling, we show that spike time irregularity is generated by a nonlinear dynamical interaction of voltage-dependent sodium and fast-inactivating potassium channels just below spike threshold, amplifying channel noise. This active irregularity may help IS cells synchronize with each other at gamma range frequencies, while resisting synchronization to lower input frequencies.

Article and author information

Author details

  1. Philipe RF Mendonça

    Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Mariana Vargas-Caballero

    Institute for Life Sciences and Centre for Biological Sciences, University of Southampton, Southampton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2326-4001
  3. Ferenc Erdélyi

    Division of Medical Gene Technology, Institute of Experimental Medicine, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  4. Gábor Szabó

    Division of Medical Gene Technology, Institute of Experimental Medicine, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  5. Ole Paulsen

    Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2258-5455
  6. Hugh PC Robinson

    Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    hpcr@cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5048-9954

Funding

Biotechnology and Biological Sciences Research Council

  • Ole Paulsen
  • Hugh PC Robinson

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

  • Philipe RF Mendonça

Cambridge Overseas Trust

  • Philipe RF Mendonça

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Frances K Skinner, University Health Network, Canada

Ethics

Animal experimentation: Experimental procedures and animal use were in accordance with the animal care guidelines of the UK Animals (Scientific Procedures) Act 1986 under Home Office project license PPL80/2440 and personal licenses held by the authors. Caution wastaken to minimize stress and the number of animals used in experiments.

Version history

  1. Received: March 29, 2016
  2. Accepted: August 17, 2016
  3. Accepted Manuscript published: August 18, 2016 (version 1)
  4. Version of Record published: September 20, 2016 (version 2)

Copyright

© 2016, Mendonça et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,361
    views
  • 545
    downloads
  • 26
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Philipe RF Mendonça
  2. Mariana Vargas-Caballero
  3. Ferenc Erdélyi
  4. Gábor Szabó
  5. Ole Paulsen
  6. Hugh PC Robinson
(2016)
Stochastic and deterministic dynamics of intrinsically irregular firing in cortical inhibitory interneurons
eLife 5:e16475.
https://doi.org/10.7554/eLife.16475

Share this article

https://doi.org/10.7554/eLife.16475

Further reading

    1. Computational and Systems Biology
    Antony M Jose
    Research Article

    Interacting molecules create regulatory architectures that can persist despite turnover of molecules. Although epigenetic changes occur within the context of such architectures, there is limited understanding of how they can influence the heritability of changes. Here, I develop criteria for the heritability of regulatory architectures and use quantitative simulations of interacting regulators parsed as entities, their sensors, and the sensed properties to analyze how architectures influence heritable epigenetic changes. Information contained in regulatory architectures grows rapidly with the number of interacting molecules and its transmission requires positive feedback loops. While these architectures can recover after many epigenetic perturbations, some resulting changes can become permanently heritable. Architectures that are otherwise unstable can become heritable through periodic interactions with external regulators, which suggests that mortal somatic lineages with cells that reproducibly interact with the immortal germ lineage could make a wider variety of architectures heritable. Differential inhibition of the positive feedback loops that transmit regulatory architectures across generations can explain the gene-specific differences in heritable RNA silencing observed in the nematode Caenorhabditis elegans. More broadly, these results provide a foundation for analyzing the inheritance of epigenetic changes within the context of the regulatory architectures implemented using diverse molecules in different living systems.

    1. Computational and Systems Biology
    2. Ecology
    Kazushi Tsutsui, Ryoya Tanaka ... Keisuke Fujii
    Research Article

    Collaborative hunting, in which predators play different and complementary roles to capture prey, has been traditionally believed to be an advanced hunting strategy requiring large brains that involve high-level cognition. However, recent findings that collaborative hunting has also been documented in smaller-brained vertebrates have placed this previous belief under strain. Here, using computational multi-agent simulations based on deep reinforcement learning, we demonstrate that decisions underlying collaborative hunts do not necessarily rely on sophisticated cognitive processes. We found that apparently elaborate coordination can be achieved through a relatively simple decision process of mapping between states and actions related to distance-dependent internal representations formed by prior experience. Furthermore, we confirmed that this decision rule of predators is robust against unknown prey controlled by humans. Our computational ecological results emphasize that collaborative hunting can emerge in various intra- and inter-specific interactions in nature, and provide insights into the evolution of sociality.