A network of epigenetic modifiers and DNA repair genes controls tissue-specific copy number alteration preference

  1. Dina Cramer
  2. Luis Serrano  Is a corresponding author
  3. Martin H Schaefer  Is a corresponding author
  1. The Barcelona Institute of Science and Technology, Spain

Abstract

Copy number alterations (CNAs) in cancer patients show a large variability in their number, length and position. CNA number and length are linked to patient survival suggesting clinical relevance. However, the sources of this variability are not known. We have identified genes that tend to be mutated in samples having few or many CNAs, which we term CONIM genes (COpy Number Instability Modulators). CONIM proteins cluster into a densely connected subnetwork of physical interactions and many of them are epigenetic modifiers. Therefore, we investigate how the epigenome of the tissue-of-origin influences the position of CNA breakpoints and the properties of the resulting CNAs. We find that the presence of heterochromatin in the tissue-of-origin contributes to the recurrence and length of CNAs in the respective cancer type.

Data availability

The following previously published data sets were used
    1. Kundaje
    2. A. et al.
    (2015) Histone ChIP-seq peaks
    Publicly available at NIH Roadmap Epigenomics Mapping Consortium.

Article and author information

Author details

  1. Dina Cramer

    EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  2. Luis Serrano

    EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
    For correspondence
    luis.serrano@crg.eu
    Competing interests
    The authors declare that no competing interests exist.
  3. Martin H Schaefer

    EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
    For correspondence
    martin.schaefer@crg.eu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7503-6364

Funding

Deutsche Forschungsgemeinschaft (SCHA 1933/1-1)

  • Martin H Schaefer

European Commission (HEALTH-F4-2011-278568)

  • Luis Serrano

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jason Ernst, University of California, Los Angeles, United States

Version history

  1. Received: March 30, 2016
  2. Accepted: November 2, 2016
  3. Accepted Manuscript published: November 10, 2016 (version 1)
  4. Version of Record published: November 24, 2016 (version 2)

Copyright

© 2016, Cramer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,762
    views
  • 366
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dina Cramer
  2. Luis Serrano
  3. Martin H Schaefer
(2016)
A network of epigenetic modifiers and DNA repair genes controls tissue-specific copy number alteration preference
eLife 5:e16519.
https://doi.org/10.7554/eLife.16519

Share this article

https://doi.org/10.7554/eLife.16519

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Weichen Song, Yongyong Shi, Guan Ning Lin
    Tools and Resources

    We propose a new framework for human genetic association studies: at each locus, a deep learning model (in this study, Sei) is used to calculate the functional genomic activity score for two haplotypes per individual. This score, defined as the Haplotype Function Score (HFS), replaces the original genotype in association studies. Applying the HFS framework to 14 complex traits in the UK Biobank, we identified 3619 independent HFS–trait associations with a significance of p < 5 × 10−8. Fine-mapping revealed 2699 causal associations, corresponding to a median increase of 63 causal findings per trait compared with single-nucleotide polymorphism (SNP)-based analysis. HFS-based enrichment analysis uncovered 727 pathway–trait associations and 153 tissue–trait associations with strong biological interpretability, including ‘circadian pathway-chronotype’ and ‘arachidonic acid-intelligence’. Lastly, we applied least absolute shrinkage and selection operator (LASSO) regression to integrate HFS prediction score with SNP-based polygenic risk scores, which showed an improvement of 16.1–39.8% in cross-ancestry polygenic prediction. We concluded that HFS is a promising strategy for understanding the genetic basis of human complex traits.

    1. Computational and Systems Biology
    Qianmu Yuan, Chong Tian, Yuedong Yang
    Tools and Resources

    Revealing protein binding sites with other molecules, such as nucleic acids, peptides, or small ligands, sheds light on disease mechanism elucidation and novel drug design. With the explosive growth of proteins in sequence databases, how to accurately and efficiently identify these binding sites from sequences becomes essential. However, current methods mostly rely on expensive multiple sequence alignments or experimental protein structures, limiting their genome-scale applications. Besides, these methods haven’t fully explored the geometry of the protein structures. Here, we propose GPSite, a multi-task network for simultaneously predicting binding residues of DNA, RNA, peptide, protein, ATP, HEM, and metal ions on proteins. GPSite was trained on informative sequence embeddings and predicted structures from protein language models, while comprehensively extracting residual and relational geometric contexts in an end-to-end manner. Experiments demonstrate that GPSite substantially surpasses state-of-the-art sequence-based and structure-based approaches on various benchmark datasets, even when the structures are not well-predicted. The low computational cost of GPSite enables rapid genome-scale binding residue annotations for over 568,000 sequences, providing opportunities to unveil unexplored associations of binding sites with molecular functions, biological processes, and genetic variants. The GPSite webserver and annotation database can be freely accessed at https://bio-web1.nscc-gz.cn/app/GPSite.