A network of epigenetic modifiers and DNA repair genes controls tissue-specific copy number alteration preference

  1. Dina Cramer
  2. Luis Serrano  Is a corresponding author
  3. Martin H Schaefer  Is a corresponding author
  1. The Barcelona Institute of Science and Technology, Spain

Abstract

Copy number alterations (CNAs) in cancer patients show a large variability in their number, length and position. CNA number and length are linked to patient survival suggesting clinical relevance. However, the sources of this variability are not known. We have identified genes that tend to be mutated in samples having few or many CNAs, which we term CONIM genes (COpy Number Instability Modulators). CONIM proteins cluster into a densely connected subnetwork of physical interactions and many of them are epigenetic modifiers. Therefore, we investigate how the epigenome of the tissue-of-origin influences the position of CNA breakpoints and the properties of the resulting CNAs. We find that the presence of heterochromatin in the tissue-of-origin contributes to the recurrence and length of CNAs in the respective cancer type.

Data availability

The following previously published data sets were used
    1. Kundaje
    2. A. et al.
    (2015) Histone ChIP-seq peaks
    Publicly available at NIH Roadmap Epigenomics Mapping Consortium.

Article and author information

Author details

  1. Dina Cramer

    EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  2. Luis Serrano

    EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
    For correspondence
    luis.serrano@crg.eu
    Competing interests
    The authors declare that no competing interests exist.
  3. Martin H Schaefer

    EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
    For correspondence
    martin.schaefer@crg.eu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7503-6364

Funding

Deutsche Forschungsgemeinschaft (SCHA 1933/1-1)

  • Martin H Schaefer

European Commission (HEALTH-F4-2011-278568)

  • Luis Serrano

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Cramer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,792
    views
  • 366
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Citations by DOI

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dina Cramer
  2. Luis Serrano
  3. Martin H Schaefer
(2016)
A network of epigenetic modifiers and DNA repair genes controls tissue-specific copy number alteration preference
eLife 5:e16519.
https://doi.org/10.7554/eLife.16519

Share this article

https://doi.org/10.7554/eLife.16519