Unique membrane properties and enhanced signal processing in human neocortical neurons

  1. Guy Eyal
  2. Matthijs B Verhoog
  3. Guilherme Testa-Silva
  4. Yair Deitcher
  5. Johannes C Lodder
  6. Ruth Benavides-Piccione
  7. Juan Morales
  8. Javier DeFelipe
  9. Christiaan PJ de Kock
  10. Huibert D Mansvelder
  11. Idan Segev  Is a corresponding author
  1. The Hebrew University of Jerusalem, Israel
  2. VU University Amsterdam, Netherlands
  3. Interdisciplinary Center for Neural Computation, Israel
  4. VU University Amsterdam, Israel
  5. Instituto Cajal, Spain
  6. Universidad Politécnica de Madrid, Spain

Abstract

The advanced cognitive capabilities of the human brain are often attributed to our recently evolved neocortex. However, it is not known whether the basic building blocks of human neocortex, the pyramidal neurons, possess unique biophysical properties that might impact on cortical computations. Here we show that layer 2/3 pyramidal neurons from human temporal cortex (HL2/3 PCs) have a specific membrane capacitance (Cm) of ~0.5 µF/cm2, half of the commonly accepted 'universal' value (~1 µF/cm2) for biological membranes. This finding was predicted by fitting in vitro voltage transients to theoretical transients then validated by direct measurement of Cm in nucleated patch experiments. Models of 3D reconstructed HL2/3 PCs demonstrated that such low Cm value significantly enhances both synaptic charge-transfer from dendrites to soma and spike propagation along the axon. This is the first demonstration that human cortical neurons have distinctive membrane properties, suggesting important implications for signal processing in human neocortex.

Article and author information

Author details

  1. Guy Eyal

    Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9537-5571
  2. Matthijs B Verhoog

    Department of Integrative Neurophysiology, Centre for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Guilherme Testa-Silva

    Department of Integrative Neurophysiology, Centre for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Yair Deitcher

    The Hebrew University of Jerusalem, Interdisciplinary Center for Neural Computation, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  5. Johannes C Lodder

    Department of Integrative Neurophysiology, Centre for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, Israel
    Competing interests
    The authors declare that no competing interests exist.
  6. Ruth Benavides-Piccione

    Instituto Cajal, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  7. Juan Morales

    Escuela Técnica Superior de Ingenieros Informáticos, Universidad Politécnica de Madrid, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  8. Javier DeFelipe

    Instituto Cajal, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  9. Christiaan PJ de Kock

    Department of Integrative Neurophysiology, Centre for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  10. Huibert D Mansvelder

    Department of Integrative Neurophysiology, Centre for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  11. Idan Segev

    Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
    For correspondence
    idan@lobster.ls.huji.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7279-9630

Funding

Netherlands Organization for Scientific Research ((NWO; 917.76.360, 912.06.148 and a VICI grant) ERC StG)

  • Huibert D Mansvelder

Hersenstichting Nederland ((grant HSN 2010(1)-09)

  • Christiaan PJ de Kock

Spanish Ministry of Economy and Competitiveness (the Cajal Blue Brain (C080020-09; the Spanish partner of the Blue Brain initiative from EPFL))

  • Javier DeFelipe

Human Brain Project and the Gatsby Charitable Foundation (grant agreement no. 604102)

  • Idan Segev

European Union's Seventh Framework Programme ((FP7/2007-2013) under grant agreement mo. 604102 (Human Brain Project))

  • Javier DeFelipe

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experimental procedures were approved by the VU University's AnimalExperimentation Ethics Committee and were in accordance with institutional and Dutch license procedures (approved protocol INF09-02A1V1).

Human subjects: All procedures on human tissue were performed with the approval of the Medical Ethical Committee (METc) of the VU University Medical Centre (VUmc), with written informed consent by patients involved to use brain tissue removed for treatment of their disease for scientific research, and in accordance with Dutch license procedures and the declaration of Helsinki (VUmc METc approval 'kenmerk 2012/362').

Copyright

© 2016, Eyal et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,533
    views
  • 1,320
    downloads
  • 164
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Guy Eyal
  2. Matthijs B Verhoog
  3. Guilherme Testa-Silva
  4. Yair Deitcher
  5. Johannes C Lodder
  6. Ruth Benavides-Piccione
  7. Juan Morales
  8. Javier DeFelipe
  9. Christiaan PJ de Kock
  10. Huibert D Mansvelder
  11. Idan Segev
(2016)
Unique membrane properties and enhanced signal processing in human neocortical neurons
eLife 5:e16553.
https://doi.org/10.7554/eLife.16553

Share this article

https://doi.org/10.7554/eLife.16553

Further reading

    1. Neuroscience
    Hans Auer, Donna Gift Cabalo ... Jessica Royer
    Research Article

    The amygdala is a subcortical region in the mesiotemporal lobe that plays a key role in emotional and sensory functions. Conventional neuroimaging experiments treat this structure as a single, uniform entity, but there is ample histological evidence for subregional heterogeneity in microstructure and function. The current study characterized subregional structure-function coupling in the human amygdala, integrating post-mortem histology and in vivo MRI at ultra-high fields. Core to our work was a novel neuroinformatics approach that leveraged multiscale texture analysis as well as non-linear dimensionality reduction techniques to identify salient dimensions of microstructural variation in a 3D post-mortem histological reconstruction of the human amygdala. We observed two axes of subregional variation in this region, describing inferior-superior as well as mediolateral trends in microstructural differentiation that in part recapitulated established atlases of amygdala subnuclei. Translating our approach to in vivo MRI data acquired at 7 Tesla, we could demonstrate the generalizability of these spatial trends across 10 healthy adults. We then cross-referenced microstructural axes with functional blood-oxygen-level dependent (BOLD) signal analysis obtained during task-free conditions, and revealed a close association of structural axes with macroscale functional network embedding, notably the temporo-limbic, default mode, and sensory-motor networks. Our novel multiscale approach consolidates descriptions of amygdala anatomy and function obtained from histological and in vivo imaging techniques.

    1. Neuroscience
    Andrea Brenna, Micaela Borsa ... Urs Albrecht
    Research Article

    The circadian clock enables organisms to synchronize biochemical and physiological processes over a 24 hr period. Natural changes in lighting conditions, as well as artificial disruptions like jet lag or shift work, can advance or delay the clock phase to align physiology with the environment. Within the suprachiasmatic nucleus (SCN) of the hypothalamus, circadian timekeeping and resetting rely on both membrane depolarization and intracellular second-messenger signaling. Voltage-gated calcium channels (VGCCs) facilitate calcium influx in both processes, activating intracellular signaling pathways that trigger Period (Per) gene expression. However, the precise mechanism by which these processes are concertedly gated remains unknown. Our study in mice demonstrates that cyclin-dependent kinase 5 (Cdk5) activity is modulated by light and regulates phase shifts of the circadian clock. We observed that knocking down Cdk5 in the SCN of mice affects phase delays but not phase advances. This is linked to uncontrolled calcium influx into SCN neurons and an unregulated protein kinase A (PKA)-calcium/calmodulin-dependent kinase (CaMK)-cAMP response element-binding protein (CREB) signaling pathway. Consequently, genes such as Per1 are not induced by light in the SCN of Cdk5 knock-down mice. Our experiments identified Cdk5 as a crucial light-modulated kinase that influences rapid clock phase adaptation. This finding elucidates how light responsiveness and clock phase coordination adapt activity onset to seasonal changes, jet lag, and shift work.