Seipin is required for converting nascent to mature lipid droplets

  1. Huajin Wang
  2. Michel Becuwe
  3. Benjamin E Housden
  4. Chandramohan Chitraju
  5. Ashley J Porras
  6. Morven M Graham
  7. Xinran N Liu
  8. Abdou Rachid Thiam
  9. David B Savage
  10. Anil K Agarwal
  11. Abhimanyu Garg
  12. Maria-Jesus Olarte
  13. Qingqing Lin
  14. Florian Fröhlich
  15. Hans Kristian Hannibal-Bach
  16. Srigokul Upadhyayula
  17. Norbert Perrimon
  18. Tomas Kirchhausen
  19. Christer S Ejsing
  20. Tobias C Walther  Is a corresponding author
  21. Robert V Farese  Is a corresponding author
  1. Carnegie Mellon University, United States
  2. Harvard T. H. Chan School of Public Health, United States
  3. Harvard Medical School, United States
  4. Yale School of Medicine, United States
  5. PSL Research University, France
  6. The University of Cambridge Metabolic Research Laboratories, United Kingdom
  7. UT Southwestern Medical Center, United States
  8. University of Southern Denmark, Denmark

Abstract

How proteins control the biogenesis of cellular lipid droplets (LDs) is poorly understood. Using Drosophila and human cells, we show here that seipin, an ER protein implicated in LD biology, mediates a discrete step in LD formation-the conversion of small, nascent LDs to larger, mature LDs. Seipin forms discrete and dynamic foci in the ER that interact with nascent LDs to enable their growth. In the absence of seipin, numerous small, nascent LDs accumulate near the ER and most often fail to grow. Those that do grow prematurely acquire lipid synthesis enzymes and undergo expansion, eventually leading to the giant LDs characteristic of seipin deficiency. Our studies identify a discrete step of LD formation, namely the conversion of nascent LDs to mature LDs, and define a molecular role for seipin in this process, most likely by acting at ER-LD contact sites to enable lipid transfer to nascent LDs.

Article and author information

Author details

  1. Huajin Wang

    Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Michel Becuwe

    Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Benjamin E Housden

    Department of Genetics, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Chandramohan Chitraju

    Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Ashley J Porras

    Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Morven M Graham

    Department of Cell Biology, Yale School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Xinran N Liu

    Department of Cell Biology, Yale School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Abdou Rachid Thiam

    Laboratoire de Physique Statistique, École Normale Supérieure, PSL Research University, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  9. David B Savage

    Wellcome Trust-MRC Institute of Metabolic Science, The University of Cambridge Metabolic Research Laboratories, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Anil K Agarwal

    Division of Nutrition and Metabolic Diseases, UT Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Abhimanyu Garg

    Division of Nutrition and Metabolic Diseases, UT Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Maria-Jesus Olarte

    Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Qingqing Lin

    Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Florian Fröhlich

    Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Hans Kristian Hannibal-Bach

    Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  16. Srigokul Upadhyayula

    Departments of Cell Biology and Pediatrics, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Norbert Perrimon

    Department of Genetics, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Tomas Kirchhausen

    Departments of Cell Biology and Pediatrics, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  19. Christer S Ejsing

    Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  20. Tobias C Walther

    Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, United States
    For correspondence
    twalther@hsph.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
  21. Robert V Farese

    Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, United States
    For correspondence
    robert@hsph.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8103-2239

Funding

National Institutes of Health (GM099844, GM097194, GM-075252)

  • Tomas Kirchhausen
  • Tobias C Walther
  • Robert V Farese

Howard Hughes Medical Institute

  • Norbert Perrimon
  • Tobias C Walther

G Harold and Leila Y. Mathers Foundation

  • Tobias C Walther

Villum Fonden (VKR023439)

  • Christer S Ejsing

Danish Council for Strategic Research (11-116196)

  • Christer S Ejsing

Wellcome Trust (WT107064)

  • David B Savage

Cambridge NIHR BRC

  • David B Savage

Biogen

  • Tomas Kirchhausen

Canadian Institutes of Health Research (Fellowship Award)

  • Huajin Wang

European Molecular Biology Organization (Longterm Fellowship EMBOLFT355)

  • Michel Becuwe

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,560
    views
  • 2,118
    downloads
  • 315
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Huajin Wang
  2. Michel Becuwe
  3. Benjamin E Housden
  4. Chandramohan Chitraju
  5. Ashley J Porras
  6. Morven M Graham
  7. Xinran N Liu
  8. Abdou Rachid Thiam
  9. David B Savage
  10. Anil K Agarwal
  11. Abhimanyu Garg
  12. Maria-Jesus Olarte
  13. Qingqing Lin
  14. Florian Fröhlich
  15. Hans Kristian Hannibal-Bach
  16. Srigokul Upadhyayula
  17. Norbert Perrimon
  18. Tomas Kirchhausen
  19. Christer S Ejsing
  20. Tobias C Walther
  21. Robert V Farese
(2016)
Seipin is required for converting nascent to mature lipid droplets
eLife 5:e16582.
https://doi.org/10.7554/eLife.16582

Share this article

https://doi.org/10.7554/eLife.16582

Further reading

    1. Cell Biology
    2. Developmental Biology
    Sofía Suárez Freire, Sebastián Perez-Pandolfo ... Mariana Melani
    Research Article

    Eukaryotic cells depend on exocytosis to direct intracellularly synthesized material toward the extracellular space or the plasma membrane, so exocytosis constitutes a basic function for cellular homeostasis and communication between cells. The secretory pathway includes biogenesis of secretory granules (SGs), their maturation and fusion with the plasma membrane (exocytosis), resulting in release of SG content to the extracellular space. The larval salivary gland of Drosophila melanogaster is an excellent model for studying exocytosis. This gland synthesizes mucins that are packaged in SGs that sprout from the trans-Golgi network and then undergo a maturation process that involves homotypic fusion, condensation, and acidification. Finally, mature SGs are directed to the apical domain of the plasma membrane with which they fuse, releasing their content into the gland lumen. The exocyst is a hetero-octameric complex that participates in tethering of vesicles to the plasma membrane during constitutive exocytosis. By precise temperature-dependent gradual activation of the Gal4-UAS expression system, we have induced different levels of silencing of exocyst complex subunits, and identified three temporarily distinctive steps of the regulated exocytic pathway where the exocyst is critically required: SG biogenesis, SG maturation, and SG exocytosis. Our results shed light on previously unidentified functions of the exocyst along the exocytic pathway. We propose that the exocyst acts as a general tethering factor in various steps of this cellular process.

    1. Cell Biology
    2. Developmental Biology
    Heungjin Ryu, Kibum Nam ... Jung-Hoon Park
    Research Article

    In most murine species, spermatozoa exhibit a falciform apical hook at the head end. The function of the sperm hook is not yet clearly understood. In this study, we investigate the role of the sperm hook in the migration of spermatozoa through the female reproductive tract in Mus musculus (C57BL/6), using a deep tissue imaging custom-built two-photon microscope. Through live reproductive tract imaging, we found evidence indicating that the sperm hook aids in the attachment of spermatozoa to the epithelium and facilitates interactions between spermatozoa and the epithelium during migration in the uterus and oviduct. We also observed synchronized sperm beating, which resulted from the spontaneous unidirectional rearrangement of spermatozoa in the uterus. Based on live imaging of spermatozoa-epithelium interaction dynamics, we propose that the sperm hook plays a crucial role in successful migration through the female reproductive tract by providing anchor-like mechanical support and facilitating interactions between spermatozoa and the female reproductive tract in the house mouse.