Seipin is required for converting nascent to mature lipid droplets

  1. Huajin Wang
  2. Michel Becuwe
  3. Benjamin E Housden
  4. Chandramohan Chitraju
  5. Ashley J Porras
  6. Morven M Graham
  7. Xinran N Liu
  8. Abdou Rachid Thiam
  9. David B Savage
  10. Anil K Agarwal
  11. Abhimanyu Garg
  12. Maria-Jesus Olarte
  13. Qingqing Lin
  14. Florian Fröhlich
  15. Hans Kristian Hannibal-Bach
  16. Srigokul Upadhyayula
  17. Norbert Perrimon
  18. Tomas Kirchhausen
  19. Christer S Ejsing
  20. Tobias C Walther  Is a corresponding author
  21. Robert V Farese  Is a corresponding author
  1. Carnegie Mellon University, United States
  2. Harvard T. H. Chan School of Public Health, United States
  3. Harvard Medical School, United States
  4. Yale School of Medicine, United States
  5. PSL Research University, France
  6. The University of Cambridge Metabolic Research Laboratories, United Kingdom
  7. UT Southwestern Medical Center, United States
  8. University of Southern Denmark, Denmark

Abstract

How proteins control the biogenesis of cellular lipid droplets (LDs) is poorly understood. Using Drosophila and human cells, we show here that seipin, an ER protein implicated in LD biology, mediates a discrete step in LD formation-the conversion of small, nascent LDs to larger, mature LDs. Seipin forms discrete and dynamic foci in the ER that interact with nascent LDs to enable their growth. In the absence of seipin, numerous small, nascent LDs accumulate near the ER and most often fail to grow. Those that do grow prematurely acquire lipid synthesis enzymes and undergo expansion, eventually leading to the giant LDs characteristic of seipin deficiency. Our studies identify a discrete step of LD formation, namely the conversion of nascent LDs to mature LDs, and define a molecular role for seipin in this process, most likely by acting at ER-LD contact sites to enable lipid transfer to nascent LDs.

Article and author information

Author details

  1. Huajin Wang

    Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Michel Becuwe

    Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Benjamin E Housden

    Department of Genetics, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Chandramohan Chitraju

    Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Ashley J Porras

    Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Morven M Graham

    Department of Cell Biology, Yale School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Xinran N Liu

    Department of Cell Biology, Yale School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Abdou Rachid Thiam

    Laboratoire de Physique Statistique, École Normale Supérieure, PSL Research University, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  9. David B Savage

    Wellcome Trust-MRC Institute of Metabolic Science, The University of Cambridge Metabolic Research Laboratories, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Anil K Agarwal

    Division of Nutrition and Metabolic Diseases, UT Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Abhimanyu Garg

    Division of Nutrition and Metabolic Diseases, UT Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Maria-Jesus Olarte

    Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Qingqing Lin

    Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Florian Fröhlich

    Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Hans Kristian Hannibal-Bach

    Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  16. Srigokul Upadhyayula

    Departments of Cell Biology and Pediatrics, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Norbert Perrimon

    Department of Genetics, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Tomas Kirchhausen

    Departments of Cell Biology and Pediatrics, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  19. Christer S Ejsing

    Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  20. Tobias C Walther

    Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, United States
    For correspondence
    twalther@hsph.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
  21. Robert V Farese

    Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, United States
    For correspondence
    robert@hsph.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8103-2239

Funding

National Institutes of Health (GM099844, GM097194, GM-075252)

  • Tomas Kirchhausen
  • Tobias C Walther
  • Robert V Farese

Howard Hughes Medical Institute

  • Norbert Perrimon
  • Tobias C Walther

G Harold and Leila Y. Mathers Foundation

  • Tobias C Walther

Villum Fonden (VKR023439)

  • Christer S Ejsing

Danish Council for Strategic Research (11-116196)

  • Christer S Ejsing

Wellcome Trust (WT107064)

  • David B Savage

Cambridge NIHR BRC

  • David B Savage

Biogen

  • Tomas Kirchhausen

Canadian Institutes of Health Research (Fellowship Award)

  • Huajin Wang

European Molecular Biology Organization (Longterm Fellowship EMBOLFT355)

  • Michel Becuwe

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 323
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Huajin Wang
  2. Michel Becuwe
  3. Benjamin E Housden
  4. Chandramohan Chitraju
  5. Ashley J Porras
  6. Morven M Graham
  7. Xinran N Liu
  8. Abdou Rachid Thiam
  9. David B Savage
  10. Anil K Agarwal
  11. Abhimanyu Garg
  12. Maria-Jesus Olarte
  13. Qingqing Lin
  14. Florian Fröhlich
  15. Hans Kristian Hannibal-Bach
  16. Srigokul Upadhyayula
  17. Norbert Perrimon
  18. Tomas Kirchhausen
  19. Christer S Ejsing
  20. Tobias C Walther
  21. Robert V Farese
(2016)
Seipin is required for converting nascent to mature lipid droplets
eLife 5:e16582.
https://doi.org/10.7554/eLife.16582

Share this article

https://doi.org/10.7554/eLife.16582

Further reading

    1. Cell Biology
    Kaili Du, Hongyu Chen ... Dan Li
    Research Article

    Niemann–Pick disease type C (NPC) is a devastating lysosomal storage disease characterized by abnormal cholesterol accumulation in lysosomes. Currently, there is no treatment for NPC. Transcription factor EB (TFEB), a member of the microphthalmia transcription factors (MiTF), has emerged as a master regulator of lysosomal function and promoted the clearance of substrates stored in cells. However, it is not known whether TFEB plays a role in cholesterol clearance in NPC disease. Here, we show that transgenic overexpression of TFEB, but not TFE3 (another member of MiTF family) facilitates cholesterol clearance in various NPC1 cell models. Pharmacological activation of TFEB by sulforaphane (SFN), a previously identified natural small-molecule TFEB agonist by us, can dramatically ameliorate cholesterol accumulation in human and mouse NPC1 cell models. In NPC1 cells, SFN induces TFEB nuclear translocation via a ROS-Ca2+-calcineurin-dependent but MTOR-independent pathway and upregulates the expression of TFEB-downstream genes, promoting lysosomal exocytosis and biogenesis. While genetic inhibition of TFEB abolishes the cholesterol clearance and exocytosis effect by SFN. In the NPC1 mouse model, SFN dephosphorylates/activates TFEB in the brain and exhibits potent efficacy of rescuing the loss of Purkinje cells and body weight. Hence, pharmacological upregulating lysosome machinery via targeting TFEB represents a promising approach to treat NPC and related lysosomal storage diseases, and provides the possibility of TFEB agonists, that is, SFN as potential NPC therapeutic candidates.

    1. Cell Biology
    2. Developmental Biology
    Sarah Y Coomson, Salil A Lachke
    Insight

    A study in mice reveals key interactions between proteins involved in fibroblast growth factor signaling and how they contribute to distinct stages of eye lens development.