A Cryptochrome 2 Mutation Yields Advanced Sleep Phase in Human

  1. Arisa Hirano
  2. Guangsen Shi
  3. Christopher R Jones
  4. Anna Lipzen
  5. Len A Pennacchio
  6. Ying Xu
  7. William C Hallows
  8. Thomas McMahon
  9. Maya Yamazaki
  10. Louis J Ptáček  Is a corresponding author
  11. Ying-Hui Fu  Is a corresponding author
  1. University of California San Francisco, United States
  2. University of California, San Francisco, United States
  3. University of Utah, United States
  4. Lawrence Berkeley National Laboratory, United States
  5. Soochow University, China

Abstract

Familial Advanced Sleep Phase (FASP) is a heritable human sleep phenotype characterized by very early sleep and wake times. We identified a missense mutation in the human Cryptochrome 2 (CRY2) gene that co-segregates with FASP in one family. The mutation leads to replacement of an alanine residue at position 260 with a threonine (A260T). In mice, the CRY2 mutation causes a shortened circadian period and reduced phase-shift to early-night light pulse associated with phase-advanced behavioral rhythms in the light-dark cycle. The A260T mutation is located in the phosphate loop of the flavin adenine dinucleotide (FAD) binding domain of CRY2. The mutation alters the conformation of CRY2, increasing its accessibility and affinity for FBXL3 (an E3 ubiquitin ligase), thus promoting its degradation. These results demonstrate that CRY2 stability controlled by FBXL3 plays a key role in the regulation of human sleep wake behavior.

Article and author information

Author details

  1. Arisa Hirano

    Department of Neurology, University of California San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  2. Guangsen Shi

    Department of Neurology, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  3. Christopher R Jones

    Department of Neurology, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  4. Anna Lipzen

    Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Walnut Creek, United States
    Competing interests
    No competing interests declared.
  5. Len A Pennacchio

    DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Walnut Creek, United States
    Competing interests
    No competing interests declared.
  6. Ying Xu

    Center for System Biology, Soochow University, Suzhou, China
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6689-7768
  7. William C Hallows

    Department of Neurology, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8306-8438
  8. Thomas McMahon

    Department of Neurology, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  9. Maya Yamazaki

    Department of Neurology, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  10. Louis J Ptáček

    Department of Neurology, University of California, San Francisco, San Francisco, United States
    For correspondence
    ljp@ucsf.edu
    Competing interests
    Louis J Ptáček, Reviewing editor, eLife.
  11. Ying-Hui Fu

    Department of Neurology, University of California, San Francisco, San Francisco, United States
    For correspondence
    ying-hui.fu@ucsf.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6628-0266

Funding

National Heart, Lung, and Blood Institute (HL059596)

  • Louis J Ptáček

National Institute of General Medical Sciences (GM079180)

  • Ying-Hui Fu

Japan Society for the Promotion of Science

  • Arisa Hirano

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental protocols (Protocol no. AN111686-02) were conducted according to US National Institutes of Health guidelines for animal research andwere approved by the Institutional Animal Care and Use Committee at the University of California, San Francisco.

Human subjects: All human subjects signed a consent form approved by the Institutional Review Boards at the University of Utah and the University of California, San Francisco (IRB# 10-03952). The consent form includes all confidentiality and ethic guidelines and also indicates not revealing subject information in the publication.

Copyright

© 2016, Hirano et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,311
    views
  • 859
    downloads
  • 128
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.16695

Further reading

    1. Neuroscience
    Ulrike Pech, Jasper Janssens ... Patrik Verstreken
    Research Article

    The classical diagnosis of Parkinsonism is based on motor symptoms that are the consequence of nigrostriatal pathway dysfunction and reduced dopaminergic output. However, a decade prior to the emergence of motor issues, patients frequently experience non-motor symptoms, such as a reduced sense of smell (hyposmia). The cellular and molecular bases for these early defects remain enigmatic. To explore this, we developed a new collection of five fruit fly models of familial Parkinsonism and conducted single-cell RNA sequencing on young brains of these models. Interestingly, cholinergic projection neurons are the most vulnerable cells, and genes associated with presynaptic function are the most deregulated. Additional single nucleus sequencing of three specific brain regions of Parkinson’s disease patients confirms these findings. Indeed, the disturbances lead to early synaptic dysfunction, notably affecting cholinergic olfactory projection neurons crucial for olfactory function in flies. Correcting these defects specifically in olfactory cholinergic interneurons in flies or inducing cholinergic signaling in Parkinson mutant human induced dopaminergic neurons in vitro using nicotine, both rescue age-dependent dopaminergic neuron decline. Hence, our research uncovers that one of the earliest indicators of disease in five different models of familial Parkinsonism is synaptic dysfunction in higher-order cholinergic projection neurons and this contributes to the development of hyposmia. Furthermore, the shared pathways of synaptic failure in these cholinergic neurons ultimately contribute to dopaminergic dysfunction later in life.

    1. Neuroscience
    Sven Ohl, Martin Rolfs
    Research Article

    Detecting causal relations structures our perception of events in the world. Here, we determined for visual interactions whether generalized (i.e. feature-invariant) or specialized (i.e. feature-selective) visual routines underlie the perception of causality. To this end, we applied a visual adaptation protocol to assess the adaptability of specific features in classical launching events of simple geometric shapes. We asked observers to report whether they observed a launch or a pass in ambiguous test events (i.e. the overlap between two discs varied from trial to trial). After prolonged exposure to causal launch events (the adaptor) defined by a particular set of features (i.e. a particular motion direction, motion speed, or feature conjunction), observers were less likely to see causal launches in subsequent ambiguous test events than before adaptation. Crucially, adaptation was contingent on the causal impression in launches as demonstrated by a lack of adaptation in non-causal control events. We assessed whether this negative aftereffect transfers to test events with a new set of feature values that were not presented during adaptation. Processing in specialized (as opposed to generalized) visual routines predicts that the transfer of visual adaptation depends on the feature similarity of the adaptor and the test event. We show that the negative aftereffects do not transfer to unadapted launch directions but do transfer to launch events of different speeds. Finally, we used colored discs to assign distinct feature-based identities to the launching and the launched stimulus. We found that the adaptation transferred across colors if the test event had the same motion direction as the adaptor. In summary, visual adaptation allowed us to carve out a visual feature space underlying the perception of causality and revealed specialized visual routines that are tuned to a launch’s motion direction.