A Cryptochrome 2 Mutation Yields Advanced Sleep Phase in Human

  1. Arisa Hirano
  2. Guangsen Shi
  3. Christopher R Jones
  4. Anna Lipzen
  5. Len A Pennacchio
  6. Ying Xu
  7. William C Hallows
  8. Thomas McMahon
  9. Maya Yamazaki
  10. Louis J Ptáček  Is a corresponding author
  11. Ying-Hui Fu  Is a corresponding author
  1. University of California San Francisco, United States
  2. University of California, San Francisco, United States
  3. University of Utah, United States
  4. Lawrence Berkeley National Laboratory, United States
  5. Soochow University, China

Abstract

Familial Advanced Sleep Phase (FASP) is a heritable human sleep phenotype characterized by very early sleep and wake times. We identified a missense mutation in the human Cryptochrome 2 (CRY2) gene that co-segregates with FASP in one family. The mutation leads to replacement of an alanine residue at position 260 with a threonine (A260T). In mice, the CRY2 mutation causes a shortened circadian period and reduced phase-shift to early-night light pulse associated with phase-advanced behavioral rhythms in the light-dark cycle. The A260T mutation is located in the phosphate loop of the flavin adenine dinucleotide (FAD) binding domain of CRY2. The mutation alters the conformation of CRY2, increasing its accessibility and affinity for FBXL3 (an E3 ubiquitin ligase), thus promoting its degradation. These results demonstrate that CRY2 stability controlled by FBXL3 plays a key role in the regulation of human sleep wake behavior.

Article and author information

Author details

  1. Arisa Hirano

    Department of Neurology, University of California San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  2. Guangsen Shi

    Department of Neurology, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  3. Christopher R Jones

    Department of Neurology, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  4. Anna Lipzen

    Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Walnut Creek, United States
    Competing interests
    No competing interests declared.
  5. Len A Pennacchio

    DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Walnut Creek, United States
    Competing interests
    No competing interests declared.
  6. Ying Xu

    Center for System Biology, Soochow University, Suzhou, China
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6689-7768
  7. William C Hallows

    Department of Neurology, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8306-8438
  8. Thomas McMahon

    Department of Neurology, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  9. Maya Yamazaki

    Department of Neurology, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  10. Louis J Ptáček

    Department of Neurology, University of California, San Francisco, San Francisco, United States
    For correspondence
    ljp@ucsf.edu
    Competing interests
    Louis J Ptáček, Reviewing editor, eLife.
  11. Ying-Hui Fu

    Department of Neurology, University of California, San Francisco, San Francisco, United States
    For correspondence
    ying-hui.fu@ucsf.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6628-0266

Funding

National Heart, Lung, and Blood Institute (HL059596)

  • Louis J Ptáček

National Institute of General Medical Sciences (GM079180)

  • Ying-Hui Fu

Japan Society for the Promotion of Science

  • Arisa Hirano

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Joseph G Gleeson, Howard Hughes Medical Institute, The Rockefeller University, United States

Ethics

Animal experimentation: All experimental protocols (Protocol no. AN111686-02) were conducted according to US National Institutes of Health guidelines for animal research andwere approved by the Institutional Animal Care and Use Committee at the University of California, San Francisco.

Human subjects: All human subjects signed a consent form approved by the Institutional Review Boards at the University of Utah and the University of California, San Francisco (IRB# 10-03952). The consent form includes all confidentiality and ethic guidelines and also indicates not revealing subject information in the publication.

Version history

  1. Received: April 6, 2016
  2. Accepted: August 14, 2016
  3. Accepted Manuscript published: August 16, 2016 (version 1)
  4. Version of Record published: September 6, 2016 (version 2)
  5. Version of Record updated: September 7, 2016 (version 3)

Copyright

© 2016, Hirano et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,038
    Page views
  • 825
    Downloads
  • 107
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Arisa Hirano
  2. Guangsen Shi
  3. Christopher R Jones
  4. Anna Lipzen
  5. Len A Pennacchio
  6. Ying Xu
  7. William C Hallows
  8. Thomas McMahon
  9. Maya Yamazaki
  10. Louis J Ptáček
  11. Ying-Hui Fu
(2016)
A Cryptochrome 2 Mutation Yields Advanced Sleep Phase in Human
eLife 5:e16695.
https://doi.org/10.7554/eLife.16695

Share this article

https://doi.org/10.7554/eLife.16695

Further reading

    1. Neuroscience
    Kiwamu Kudo, Kamalini G Ranasinghe ... Srikantan S Nagarajan
    Research Article

    Alzheimer’s disease (AD) is characterized by the accumulation of amyloid-β and misfolded tau proteins causing synaptic dysfunction, and progressive neurodegeneration and cognitive decline. Altered neural oscillations have been consistently demonstrated in AD. However, the trajectories of abnormal neural oscillations in AD progression and their relationship to neurodegeneration and cognitive decline are unknown. Here, we deployed robust event-based sequencing models (EBMs) to investigate the trajectories of long-range and local neural synchrony across AD stages, estimated from resting-state magnetoencephalography. The increases in neural synchrony in the delta-theta band and the decreases in the alpha and beta bands showed progressive changes throughout the stages of the EBM. Decreases in alpha and beta band synchrony preceded both neurodegeneration and cognitive decline, indicating that frequency-specific neuronal synchrony abnormalities are early manifestations of AD pathophysiology. The long-range synchrony effects were greater than the local synchrony, indicating a greater sensitivity of connectivity metrics involving multiple regions of the brain. These results demonstrate the evolution of functional neuronal deficits along the sequence of AD progression.

    1. Medicine
    2. Neuroscience
    Luisa Fassi, Shachar Hochman ... Roi Cohen Kadosh
    Research Article

    In recent years, there has been debate about the effectiveness of treatments from different fields, such as neurostimulation, neurofeedback, brain training, and pharmacotherapy. This debate has been fuelled by contradictory and nuanced experimental findings. Notably, the effectiveness of a given treatment is commonly evaluated by comparing the effect of the active treatment versus the placebo on human health and/or behaviour. However, this approach neglects the individual’s subjective experience of the type of treatment she or he received in establishing treatment efficacy. Here, we show that individual differences in subjective treatment - the thought of receiving the active or placebo condition during an experiment - can explain variability in outcomes better than the actual treatment. We analysed four independent datasets (N = 387 participants), including clinical patients and healthy adults from different age groups who were exposed to different neurostimulation treatments (transcranial magnetic stimulation: Studies 1 and 2; transcranial direct current stimulation: Studies 3 and 4). Our findings show that the inclusion of subjective treatment can provide a better model fit either alone or in interaction with objective treatment (defined as the condition to which participants are assigned in the experiment). These results demonstrate the significant contribution of subjective experience in explaining the variability of clinical, cognitive, and behavioural outcomes. We advocate for existing and future studies in clinical and non-clinical research to start accounting for participants’ subjective beliefs and their interplay with objective treatment when assessing the efficacy of treatments. This approach will be crucial in providing a more accurate estimation of the treatment effect and its source, allowing the development of effective and reproducible interventions.