Pathogenic shifts in endogenous microbiota impede tissue regeneration via distinct activation of TAK1/MKK/p38
Abstract
The interrelationship between endogenous microbiota, the immune system, and tissue regeneration is an area of intense research due to its potential therapeutic applications. We investigated this relationship in Schmidtea mediterranea, a model organism capable of regenerating any and all of its adult tissues. Microbiome characterization revealed a high Bacteroidetes to Proteobacteria ratio in healthy animals. Perturbations eliciting an expansion of Proteobacteria coincided with ectopic lesions and tissue degeneration. Culture of these bacteria yielded a strain of Pseudomonas capable of inducing progressive tissue degeneration. RNAi screening uncovered a TAK1 innate immune signaling module underlying compromised tissue homeostasis and regeneration during infection. TAK1/MKK/p38 signaling mediated opposing regulation of apoptosis during infection versus normal tissue regeneration. Given the complex role of inflammation in either hindering or supporting reparative wound healing and regeneration, this invertebrate model provides a basis for dissecting the duality of evolutionarily conserved inflammatory signaling in complex, multi-organ adult tissue regeneration.
Article and author information
Author details
Funding
Howard Hughes Medical Institute
- Alejandro Sánchez Alvarado
National Institute of General Medical Sciences (R37GM057260)
- Alejandro Sánchez Alvarado
Stowers Institute for Medical Research
- Alejandro Sánchez Alvarado
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2016, Arnold et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 5,658
- views
-
- 1,008
- downloads
-
- 95
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Citations by DOI
-
- 95
- citations for umbrella DOI https://doi.org/10.7554/eLife.16793