Pathogenic shifts in endogenous microbiota impede tissue regeneration via distinct activation of TAK1/MKK/p38

  1. Christopher P Arnold
  2. M Shane Merryman
  3. Alisha Harris-Arnold
  4. Sean A McKinney
  5. Chris W Seidel
  6. Sydney Loethen
  7. Kylie N Proctor
  8. Alejandro Sánchez Alvarado  Is a corresponding author
  1. Stowers Institute for Medical Research, United States
  2. University of Missouri, United States
  3. Pittsburg State University, United States

Abstract

The interrelationship between endogenous microbiota, the immune system, and tissue regeneration is an area of intense research due to its potential therapeutic applications. We investigated this relationship in Schmidtea mediterranea, a model organism capable of regenerating any and all of its adult tissues. Microbiome characterization revealed a high Bacteroidetes to Proteobacteria ratio in healthy animals. Perturbations eliciting an expansion of Proteobacteria coincided with ectopic lesions and tissue degeneration. Culture of these bacteria yielded a strain of Pseudomonas capable of inducing progressive tissue degeneration. RNAi screening uncovered a TAK1 innate immune signaling module underlying compromised tissue homeostasis and regeneration during infection. TAK1/MKK/p38 signaling mediated opposing regulation of apoptosis during infection versus normal tissue regeneration. Given the complex role of inflammation in either hindering or supporting reparative wound healing and regeneration, this invertebrate model provides a basis for dissecting the duality of evolutionarily conserved inflammatory signaling in complex, multi-organ adult tissue regeneration.

Article and author information

Author details

  1. Christopher P Arnold

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    No competing interests declared.
  2. M Shane Merryman

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    No competing interests declared.
  3. Alisha Harris-Arnold

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    No competing interests declared.
  4. Sean A McKinney

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    No competing interests declared.
  5. Chris W Seidel

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    No competing interests declared.
  6. Sydney Loethen

    University of Missouri, Kansas City, United States
    Competing interests
    No competing interests declared.
  7. Kylie N Proctor

    Pittsburg State University, Pittsburg, United States
    Competing interests
    No competing interests declared.
  8. Alejandro Sánchez Alvarado

    Stowers Institute for Medical Research, Kansas City, United States
    For correspondence
    asa@stowers.org
    Competing interests
    Alejandro Sánchez Alvarado, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1966-6959

Funding

Howard Hughes Medical Institute

  • Alejandro Sánchez Alvarado

National Institute of General Medical Sciences (R37GM057260)

  • Alejandro Sánchez Alvarado

Stowers Institute for Medical Research

  • Alejandro Sánchez Alvarado

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Arnold et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,440
    views
  • 982
    downloads
  • 80
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Christopher P Arnold
  2. M Shane Merryman
  3. Alisha Harris-Arnold
  4. Sean A McKinney
  5. Chris W Seidel
  6. Sydney Loethen
  7. Kylie N Proctor
  8. Alejandro Sánchez Alvarado
(2016)
Pathogenic shifts in endogenous microbiota impede tissue regeneration via distinct activation of TAK1/MKK/p38
eLife 5:e16793.
https://doi.org/10.7554/eLife.16793

Share this article

https://doi.org/10.7554/eLife.16793

Further reading

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Laura Massoz, David Bergemann ... Isabelle Manfroid
    Research Article

    Stimulation of pancreatic beta cell regeneration could be a therapeutic lead to treat diabetes. Unlike humans, the zebrafish can efficiently regenerate beta cells, notably from ductal pancreatic progenitors. To gain insight into the molecular pathways involved in this process, we established the transcriptomic profile of the ductal cells after beta cell ablation in the adult zebrafish. These data highlighted the protein phosphatase calcineurin (CaN) as a new potential modulator of beta cell regeneration. We showed that CaN overexpression abolished the regenerative response, leading to glycemia dysregulation. On the opposite, CaN inhibition increased ductal cell proliferation and subsequent beta cell regeneration. Interestingly, the enhanced proliferation of the progenitors was paradoxically coupled with their exhaustion. This suggests that the proliferating progenitors are next entering in differentiation. CaN appears as a guardian which prevents an excessive progenitor proliferation to preserve the pool of progenitors. Altogether, our findings reveal CaN as a key player in the balance between proliferation and differentiation to enable a proper beta cell regeneration.

    1. Neuroscience
    2. Stem Cells and Regenerative Medicine
    Kyusang Yoo, Young-Woo Jo ... Young-Yun Kong
    Research Article

    Fibro-adipogenic progenitors (FAPs) are muscle-resident mesenchymal progenitors that can contribute to muscle tissue homeostasis and regeneration, as well as postnatal maturation and lifelong maintenance of the neuromuscular system. Recently, traumatic injury to the peripheral nerve was shown to activate FAPs, suggesting that FAPs can respond to nerve injury. However, questions of how FAPs can sense the anatomically distant peripheral nerve injury and whether FAPs can directly contribute to nerve regeneration remained unanswered. Here, utilizing single-cell transcriptomics and mouse models, we discovered that a subset of FAPs expressing GDNF receptors Ret and Gfra1 can respond to peripheral nerve injury by sensing GDNF secreted by Schwann cells. Upon GDNF sensing, this subset becomes activated and expresses Bdnf. FAP-specific inactivation of Bdnf (Prrx1Cre; Bdnffl/fl) resulted in delayed nerve regeneration owing to defective remyelination, indicating that GDNF-sensing FAPs play an important role in the remyelination process during peripheral nerve regeneration. In aged mice, significantly reduced Bdnf expression in FAPs was observed upon nerve injury, suggesting the clinical relevance of FAP-derived BDNF in the age-related delays in nerve regeneration. Collectively, our study revealed the previously unidentified role of FAPs in peripheral nerve regeneration, and the molecular mechanism behind FAPs’ response to peripheral nerve injury.