How open science helps researchers succeed
Abstract
Open access, open data, open source, and other open scholarship practices are growing in popularity and necessity. However, widespread adoption of these practices has not yet been achieved. One reason is that researchers are uncertain about how sharing their work will affect their careers. We review literature demonstrating that open research is associated with increases in citations, media attention, potential collaborators, job opportunities, and funding opportunities. These findings are evidence that open research practices bring significant benefits to researchers relative to more traditional closed practices.
Article and author information
Author details
Reviewing Editor
- Peter Rodgers, eLife, United Kingdom
Publication history
- Received: April 8, 2016
- Accepted: July 4, 2016
- Accepted Manuscript published: July 7, 2016 (version 1)
- Version of Record published: July 29, 2016 (version 2)
Copyright
© 2016, McKiernan et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 30,317
- Page views
-
- 4,813
- Downloads
-
- 268
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Further reading
-
Researchers can benefit from making their research findings freely available online.
-
- Biochemistry and Chemical Biology
- Structural Biology and Molecular Biophysics
Doublecortin (DCX) is a microtubule (MT)-associated protein that regulates MT structure and function during neuronal development and mutations in DCX lead to a spectrum of neurological disorders. The structural properties of MT-bound DCX that explain these disorders are incompletely determined. Here, we describe the molecular architecture of the DCX–MT complex through an integrative modeling approach that combines data from X-ray crystallography, cryo-electron microscopy, and a high-fidelity chemical crosslinking method. We demonstrate that DCX interacts with MTs through its N-terminal domain and induces a lattice-dependent self-association involving the C-terminal structured domain and its disordered tail, in a conformation that favors an open, domain-swapped state. The networked state can accommodate multiple different attachment points on the MT lattice, all of which orient the C-terminal tails away from the lattice. As numerous disease mutations cluster in the C-terminus, and regulatory phosphorylations cluster in its tail, our study shows that lattice-driven self-assembly is an important property of DCX.