Synergistic plasticity of intrinsic conductance and electrical coupling restores synchrony in an intact motor network

  1. Brian J Lane
  2. Pranit Samarth
  3. Joseph L Ransdell
  4. Satish S Nair
  5. David J Schulz  Is a corresponding author
  1. University of Missouri-Columbia, United States

Abstract

Motor neurons of the crustacean cardiac ganglion generate virtually identical, synchronized output despite the fact that each neuron uses distinct conductance magnitudes. As a result of this variability, manipulations that target ionic conductances have distinct effects on neurons within the same ganglion, disrupting synchronized motor neuron output that is necessary for proper cardiac function. We hypothesized that robustness in network output is accomplished via plasticity that counters such destabilizing influences. By blocking high-threshold K+ conductances in motor neurons within the ongoing cardiac network, we discovered that compensation both resynchronized the network and helped restore excitability. Using model findings to guide experimentation, we determined that compensatory increases of both GA and electrical coupling restored function in the network. This is one of the first direct demonstrations of physiological regulation of coupling conductance in a compensatory context, and of synergistic plasticity across cell- and network-level mechanisms in the restoration of output.

Article and author information

Author details

  1. Brian J Lane

    Division of Biological Sciences, University of Missouri-Columbia, Columbia, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Pranit Samarth

    Department of Electrical and Computer Engineering, University of Missouri-Columbia, Columbia, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Joseph L Ransdell

    Division of Biological Sciences, University of Missouri-Columbia, Columbia, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Satish S Nair

    Department of Electrical and Computer Engineering, University of Missouri-Columbia, Columbia, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. David J Schulz

    Division of Biological Sciences, University of Missouri-Columbia, Columbia, United States
    For correspondence
    SchulzD@missouri.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4532-5362

Funding

National Institutes of Health (MH46742)

  • David J Schulz

University of Missouri Research Board

  • Satish S Nair
  • David J Schulz

National Institutes of Health (MH087755)

  • Satish S Nair

National Institutes of Health (5T32GM008396)

  • Brian J Lane

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Lane et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 917
    views
  • 223
    downloads
  • 31
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Brian J Lane
  2. Pranit Samarth
  3. Joseph L Ransdell
  4. Satish S Nair
  5. David J Schulz
(2016)
Synergistic plasticity of intrinsic conductance and electrical coupling restores synchrony in an intact motor network
eLife 5:e16879.
https://doi.org/10.7554/eLife.16879

Share this article

https://doi.org/10.7554/eLife.16879

Further reading

    1. Neuroscience
    2. Physics of Living Systems
    Moritz Schloetter, Georg U Maret, Christoph J Kleineidam
    Research Article

    Neurons generate and propagate electrical pulses called action potentials which annihilate on arrival at the axon terminal. We measure the extracellular electric field generated by propagating and annihilating action potentials and find that on annihilation, action potentials expel a local discharge. The discharge at the axon terminal generates an inhomogeneous electric field that immediately influences target neurons and thus provokes ephaptic coupling. Our measurements are quantitatively verified by a powerful analytical model which reveals excitation and inhibition in target neurons, depending on position and morphology of the source-target arrangement. Our model is in full agreement with experimental findings on ephaptic coupling at the well-studied Basket cell-Purkinje cell synapse. It is able to predict ephaptic coupling for any other synaptic geometry as illustrated by a few examples.

    1. Neuroscience
    Sven Ohl, Martin Rolfs
    Research Article

    Detecting causal relations structures our perception of events in the world. Here, we determined for visual interactions whether generalized (i.e. feature-invariant) or specialized (i.e. feature-selective) visual routines underlie the perception of causality. To this end, we applied a visual adaptation protocol to assess the adaptability of specific features in classical launching events of simple geometric shapes. We asked observers to report whether they observed a launch or a pass in ambiguous test events (i.e. the overlap between two discs varied from trial to trial). After prolonged exposure to causal launch events (the adaptor) defined by a particular set of features (i.e. a particular motion direction, motion speed, or feature conjunction), observers were less likely to see causal launches in subsequent ambiguous test events than before adaptation. Crucially, adaptation was contingent on the causal impression in launches as demonstrated by a lack of adaptation in non-causal control events. We assessed whether this negative aftereffect transfers to test events with a new set of feature values that were not presented during adaptation. Processing in specialized (as opposed to generalized) visual routines predicts that the transfer of visual adaptation depends on the feature similarity of the adaptor and the test event. We show that the negative aftereffects do not transfer to unadapted launch directions but do transfer to launch events of different speeds. Finally, we used colored discs to assign distinct feature-based identities to the launching and the launched stimulus. We found that the adaptation transferred across colors if the test event had the same motion direction as the adaptor. In summary, visual adaptation allowed us to carve out a visual feature space underlying the perception of causality and revealed specialized visual routines that are tuned to a launch’s motion direction.