Synergistic plasticity of intrinsic conductance and electrical coupling restores synchrony in an intact motor network

  1. Brian J Lane
  2. Pranit Samarth
  3. Joseph L Ransdell
  4. Satish S Nair
  5. David J Schulz  Is a corresponding author
  1. University of Missouri-Columbia, United States

Abstract

Motor neurons of the crustacean cardiac ganglion generate virtually identical, synchronized output despite the fact that each neuron uses distinct conductance magnitudes. As a result of this variability, manipulations that target ionic conductances have distinct effects on neurons within the same ganglion, disrupting synchronized motor neuron output that is necessary for proper cardiac function. We hypothesized that robustness in network output is accomplished via plasticity that counters such destabilizing influences. By blocking high-threshold K+ conductances in motor neurons within the ongoing cardiac network, we discovered that compensation both resynchronized the network and helped restore excitability. Using model findings to guide experimentation, we determined that compensatory increases of both GA and electrical coupling restored function in the network. This is one of the first direct demonstrations of physiological regulation of coupling conductance in a compensatory context, and of synergistic plasticity across cell- and network-level mechanisms in the restoration of output.

Article and author information

Author details

  1. Brian J Lane

    Division of Biological Sciences, University of Missouri-Columbia, Columbia, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Pranit Samarth

    Department of Electrical and Computer Engineering, University of Missouri-Columbia, Columbia, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Joseph L Ransdell

    Division of Biological Sciences, University of Missouri-Columbia, Columbia, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Satish S Nair

    Department of Electrical and Computer Engineering, University of Missouri-Columbia, Columbia, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. David J Schulz

    Division of Biological Sciences, University of Missouri-Columbia, Columbia, United States
    For correspondence
    SchulzD@missouri.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4532-5362

Funding

National Institutes of Health (MH46742)

  • David J Schulz

University of Missouri Research Board

  • Satish S Nair
  • David J Schulz

National Institutes of Health (MH087755)

  • Satish S Nair

National Institutes of Health (5T32GM008396)

  • Brian J Lane

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ronald L Calabrese, Emory University, United States

Publication history

  1. Received: April 13, 2016
  2. Accepted: August 22, 2016
  3. Accepted Manuscript published: August 23, 2016 (version 1)
  4. Version of Record published: September 16, 2016 (version 2)

Copyright

© 2016, Lane et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 863
    Page views
  • 215
    Downloads
  • 18
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Brian J Lane
  2. Pranit Samarth
  3. Joseph L Ransdell
  4. Satish S Nair
  5. David J Schulz
(2016)
Synergistic plasticity of intrinsic conductance and electrical coupling restores synchrony in an intact motor network
eLife 5:e16879.
https://doi.org/10.7554/eLife.16879

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Carolyn Elya, Danylo Lavrentovich ... Benjamin de Bivort
    Research Article Updated

    For at least two centuries, scientists have been enthralled by the “zombie” behaviors induced by mind-controlling parasites. Despite this interest, the mechanistic bases of these uncanny processes have remained mostly a mystery. Here, we leverage the Entomophthora muscae-Drosophila melanogaster “zombie fly” system to reveal the mechanistic underpinnings of summit disease, a manipulated behavior evoked by many fungal parasites. Using a high-throughput approach to measure summiting, we discovered that summiting behavior is characterized by a burst of locomotion and requires the host circadian and neurosecretory systems, specifically DN1p circadian neurons, pars intercerebralis to corpora allata projecting (PI-CA) neurons and corpora allata (CA), the latter being solely responsible for juvenile hormone (JH) synthesis and release. Using a machine learning classifier to identify summiting animals in real time, we observed that PI-CA neurons and CA appeared intact in summiting animals, despite invasion of adjacent regions of the “zombie fly” brain by E. muscae cells and extensive host tissue damage in the body cavity. The blood-brain barrier of flies late in their infection was significantly permeabilized, suggesting that factors in the hemolymph may have greater access to the central nervous system during summiting. Metabolomic analysis of hemolymph from summiting flies revealed differential abundance of several compounds compared to non-summiting flies. Transfusing the hemolymph of summiting flies into non-summiting recipients induced a burst of locomotion, demonstrating that factor(s) in the hemolymph likely cause summiting behavior. Altogether, our work reveals a neuro-mechanistic model for summiting wherein fungal cells perturb the fly’s hemolymph, activating a neurohormonal pathway linking clock neurons to juvenile hormone production in the CA, ultimately inducing locomotor activity in their host.

    1. Neuroscience
    Flavia Venetucci Gouveia, Jurgen Germann ... Clement Hamani
    Research Article Updated

    Deep brain stimulation targeting the posterior hypothalamus (pHyp-DBS) is being investigated as a treatment for refractory aggressive behavior, but its mechanisms of action remain elusive. We conducted an integrated imaging analysis of a large multi-centre dataset, incorporating volume of activated tissue modeling, probabilistic mapping, normative connectomics, and atlas-derived transcriptomics. Ninety-one percent of the patients responded positively to treatment, with a more striking improvement recorded in the pediatric population. Probabilistic mapping revealed an optimized surgical target within the posterior-inferior-lateral region of the posterior hypothalamic area. Normative connectomic analyses identified fiber tracts and functionally connected with brain areas associated with sensorimotor function, emotional regulation, and monoamine production. Functional connectivity between the target, periaqueductal gray and key limbic areas – together with patient age – were highly predictive of treatment outcome. Transcriptomic analysis showed that genes involved in mechanisms of aggressive behavior, neuronal communication, plasticity and neuroinflammation might underlie this functional network.