Synergistic plasticity of intrinsic conductance and electrical coupling restores synchrony in an intact motor network

  1. Brian J Lane
  2. Pranit Samarth
  3. Joseph L Ransdell
  4. Satish S Nair
  5. David J Schulz  Is a corresponding author
  1. University of Missouri-Columbia, United States

Abstract

Motor neurons of the crustacean cardiac ganglion generate virtually identical, synchronized output despite the fact that each neuron uses distinct conductance magnitudes. As a result of this variability, manipulations that target ionic conductances have distinct effects on neurons within the same ganglion, disrupting synchronized motor neuron output that is necessary for proper cardiac function. We hypothesized that robustness in network output is accomplished via plasticity that counters such destabilizing influences. By blocking high-threshold K+ conductances in motor neurons within the ongoing cardiac network, we discovered that compensation both resynchronized the network and helped restore excitability. Using model findings to guide experimentation, we determined that compensatory increases of both GA and electrical coupling restored function in the network. This is one of the first direct demonstrations of physiological regulation of coupling conductance in a compensatory context, and of synergistic plasticity across cell- and network-level mechanisms in the restoration of output.

Article and author information

Author details

  1. Brian J Lane

    Division of Biological Sciences, University of Missouri-Columbia, Columbia, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Pranit Samarth

    Department of Electrical and Computer Engineering, University of Missouri-Columbia, Columbia, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Joseph L Ransdell

    Division of Biological Sciences, University of Missouri-Columbia, Columbia, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Satish S Nair

    Department of Electrical and Computer Engineering, University of Missouri-Columbia, Columbia, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. David J Schulz

    Division of Biological Sciences, University of Missouri-Columbia, Columbia, United States
    For correspondence
    SchulzD@missouri.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4532-5362

Funding

National Institutes of Health (MH46742)

  • David J Schulz

University of Missouri Research Board

  • Satish S Nair
  • David J Schulz

National Institutes of Health (MH087755)

  • Satish S Nair

National Institutes of Health (5T32GM008396)

  • Brian J Lane

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ronald L Calabrese, Emory University, United States

Version history

  1. Received: April 13, 2016
  2. Accepted: August 22, 2016
  3. Accepted Manuscript published: August 23, 2016 (version 1)
  4. Version of Record published: September 16, 2016 (version 2)

Copyright

© 2016, Lane et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 887
    views
  • 220
    downloads
  • 26
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Brian J Lane
  2. Pranit Samarth
  3. Joseph L Ransdell
  4. Satish S Nair
  5. David J Schulz
(2016)
Synergistic plasticity of intrinsic conductance and electrical coupling restores synchrony in an intact motor network
eLife 5:e16879.
https://doi.org/10.7554/eLife.16879

Share this article

https://doi.org/10.7554/eLife.16879

Further reading

    1. Cell Biology
    2. Neuroscience
    Marcos Moreno-Aguilera, Alba M Neher ... Carme Gallego
    Research Article Updated

    Alternative RNA splicing is an essential and dynamic process in neuronal differentiation and synapse maturation, and dysregulation of this process has been associated with neurodegenerative diseases. Recent studies have revealed the importance of RNA-binding proteins in the regulation of neuronal splicing programs. However, the molecular mechanisms involved in the control of these splicing regulators are still unclear. Here, we show that KIS, a kinase upregulated in the developmental brain, imposes a genome-wide alteration in exon usage during neuronal differentiation in mice. KIS contains a protein-recognition domain common to spliceosomal components and phosphorylates PTBP2, counteracting the role of this splicing factor in exon exclusion. At the molecular level, phosphorylation of unstructured domains within PTBP2 causes its dissociation from two co-regulators, Matrin3 and hnRNPM, and hinders the RNA-binding capability of the complex. Furthermore, KIS and PTBP2 display strong and opposing functional interactions in synaptic spine emergence and maturation. Taken together, our data uncover a post-translational control of splicing regulators that link transcriptional and alternative exon usage programs in neuronal development.

    1. Genetics and Genomics
    2. Neuroscience
    Kenneth Chiou, Noah Snyder-Mackler
    Insight

    Single-cell RNA sequencing reveals the extent to which marmosets carry genetically distinct cells from their siblings.