Complexin induces a conformational change at the membrane-proximal C-terminal end of the SNARE complex

  1. Ucheor B Choi
  2. Minglei Zhao
  3. Yunxiang Zhang
  4. Ying Lai
  5. Axel T Brunger  Is a corresponding author
  1. Howard Hughes Medical Institute, Stanford University, United States

Abstract

Complexin regulates spontaneous release and activates Ca2+-triggered neurotransmitter release, yet the molecular mechanisms are still unclear. Here we performed single molecule fluorescence resonance energy transfer experiments and uncovered two conformations of complexin-1 when bound to the ternary SNARE complex. In the cis conformation, complexin-1 induces a conformational change at the membrane-proximal C-terminal end of the ternary SNARE complex that specifically depends on the N-terminal, accessory, and central domains of complexin-1. Together with a previous study involving αSNAP, these data suggest that the C-terminal end of the ternary SNARE complex is more plastic than the N-terminal half. In the trans conformation, complexin-1 can simultaneously interact with a ternary SNARE complex via the central domain and a binary SNARE complex consisting of syntaxin-1A and SNAP-25A via the accessory domain. The cis conformation may be involved in activation of synchronous neurotransmitter release, whereas both conformations may be involved in regulating spontaneous release.

Article and author information

Author details

  1. Ucheor B Choi

    Departments of Molecular and Cellular Physiology, Neurology and Neurological Sciences, Photon Science, and Structural Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  2. Minglei Zhao

    Departments of Molecular and Cellular Physiology, Neurology and Neurological Sciences, Photon Science, and Structural Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  3. Yunxiang Zhang

    Departments of Molecular and Cellular Physiology, Neurology and Neurological Sciences, Photon Science, and Structural Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  4. Ying Lai

    Departments of Molecular and Cellular Physiology, Neurology and Neurological Sciences, Photon Science, and Structural Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  5. Axel T Brunger

    Departments of Molecular and Cellular Physiology, Neurology and Neurological Sciences, Photon Science, and Structural Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
    For correspondence
    brunger@stanford.edu
    Competing interests
    Axel T Brunger, Reviewing editor, eLife.

Copyright

© 2016, Choi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,308
    views
  • 602
    downloads
  • 37
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ucheor B Choi
  2. Minglei Zhao
  3. Yunxiang Zhang
  4. Ying Lai
  5. Axel T Brunger
(2016)
Complexin induces a conformational change at the membrane-proximal C-terminal end of the SNARE complex
eLife 5:e16886.
https://doi.org/10.7554/eLife.16886

Share this article

https://doi.org/10.7554/eLife.16886

Further reading

    1. Structural Biology and Molecular Biophysics
    Yuanyuan Wang, Fan Xu ... Yongning He
    Research Article

    SCARF1 (scavenger receptor class F member 1, SREC-1 or SR-F1) is a type I transmembrane protein that recognizes multiple endogenous and exogenous ligands such as modified low-density lipoproteins (LDLs) and is important for maintaining homeostasis and immunity. But the structural information and the mechanisms of ligand recognition of SCARF1 are largely unavailable. Here, we solve the crystal structures of the N-terminal fragments of human SCARF1, which show that SCARF1 forms homodimers and its epidermal growth factor (EGF)-like domains adopt a long-curved conformation. Then, we examine the interactions of SCARF1 with lipoproteins and are able to identify a region on SCARF1 for recognizing modified LDLs. The mutagenesis data show that the positively charged residues in the region are crucial for the interaction of SCARF1 with modified LDLs, which is confirmed by making chimeric molecules of SCARF1 and SCARF2. In addition, teichoic acids, a cell wall polymer expressed on the surface of gram-positive bacteria, are able to inhibit the interactions of modified LDLs with SCARF1, suggesting the ligand binding sites of SCARF1 might be shared for some of its scavenging targets. Overall, these results provide mechanistic insights into SCARF1 and its interactions with the ligands, which are important for understanding its physiological roles in homeostasis and the related diseases.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Jie Luo, Jeff Ranish
    Tools and Resources

    Dynamic conformational and structural changes in proteins and protein complexes play a central and ubiquitous role in the regulation of protein function, yet it is very challenging to study these changes, especially for large protein complexes, under physiological conditions. Here, we introduce a novel isobaric crosslinker, Qlinker, for studying conformational and structural changes in proteins and protein complexes using quantitative crosslinking mass spectrometry. Qlinkers are small and simple, amine-reactive molecules with an optimal extended distance of ~10 Å, which use MS2 reporter ions for relative quantification of Qlinker-modified peptides derived from different samples. We synthesized the 2-plex Q2linker and showed that the Q2linker can provide quantitative crosslinking data that pinpoints key conformational and structural changes in biosensors, binary and ternary complexes composed of the general transcription factors TBP, TFIIA, and TFIIB, and RNA polymerase II complexes.