Visual landmarks sharpen grid cell metric and confer context specificity to neurons of the medial entorhinal cortex

Abstract

Neurons of the medial entorhinal cortex (MEC) provide spatial representations critical for navigation. In this network, the periodic firing fields of grid cells act as a metric element for position. The location of the grid firing fields depends on interactions between self-motion information, geometrical properties of the environment and nonmetric contextual cues. Here, we test whether visual information, including nonmetric contextual cues, also regulates the firing rate of MEC neurons. Removal of visual landmarks caused a profound impairment in grid cell periodicity. Moreover, the speed code of MEC neurons changed in darkness and the activity of border cells became less confined to environmental boundaries. Half of the MEC neurons changed their firing rate in darkness. Manipulations of nonmetric visual cues that left the boundaries of a 1D environment in place caused rate changes in grid cells. These findings reveal context specificity in the rate code of MEC neurons.

Data availability

The following data sets were generated

Article and author information

Author details

  1. José Antonio Pérez-Escobar

    Department of Clinical Neurobiology, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Olga Kornienko

    Department of Clinical Neurobiology, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Patrick Latuske

    Department of Clinical Neurobiology, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Laura Kohler

    Department of Clinical Neurobiology, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Kevin Allen

    Department of Clinical Neurobiology, Heidelberg University, Heidelberg, Germany
    For correspondence
    allen@uni-heidelberg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5319-3721

Funding

Deutsche Forschungsgemeinschaft (AL 1730/1-1)

  • Kevin Allen

Deutsche Forschungsgemeinschaft (SFB 1134)

  • Kevin Allen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were carried out in accordance with the European Committees Directive (86/609/EEC) and were approved by the Governmental Supervisory Panel on Animal Experiments of Baden-Württemberg at Karlsruhe (35-9185.81/G-113/10). Every effort was made to minimize suffering.

Copyright

© 2016, Pérez-Escobar et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,886
    views
  • 1,034
    downloads
  • 104
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. José Antonio Pérez-Escobar
  2. Olga Kornienko
  3. Patrick Latuske
  4. Laura Kohler
  5. Kevin Allen
(2016)
Visual landmarks sharpen grid cell metric and confer context specificity to neurons of the medial entorhinal cortex
eLife 5:e16937.
https://doi.org/10.7554/eLife.16937

Share this article

https://doi.org/10.7554/eLife.16937

Further reading

    1. Neuroscience
    Yiheng Zhang, Yun Chen ... He Cui
    Research Article

    Although recent studies suggest that activity in the motor cortex, in addition to generating motor outputs, receives substantial information regarding sensory inputs, it is still unclear how sensory context adjusts the motor commands. Here, we recorded population neural activity in the motor cortex via microelectrode arrays while monkeys performed flexible manual interceptions of moving targets. During this task, which requires predictive sensorimotor control, the activity of most neurons in the motor cortex encoding upcoming movements was influenced by ongoing target motion. Single-trial neural states at the movement onset formed staggered orbital geometries, suggesting that target motion modulates peri-movement activity in an orthogonal manner. This neural geometry was further evaluated with a representational model and recurrent neural networks (RNNs) with task-specific input-output mapping. We propose that the sensorimotor dynamics can be derived from neuronal mixed sensorimotor selectivity and dynamic interaction between modulations.

    1. Neuroscience
    Hannah Bos, Christoph Miehl ... Brent Doiron
    Research Article

    Synaptic inhibition is the mechanistic backbone of a suite of cortical functions, not the least of which are maintaining network stability and modulating neuronal gain. In cortical models with a single inhibitory neuron class, network stabilization and gain control work in opposition to one another – meaning high gain coincides with low stability and vice versa. It is now clear that cortical inhibition is diverse, with molecularly distinguished cell classes having distinct positions within the cortical circuit. We analyze circuit models with pyramidal neurons (E) as well as parvalbumin (PV) and somatostatin (SOM) expressing interneurons. We show how, in E – PV – SOM recurrently connected networks, SOM-mediated modulation can lead to simultaneous increases in neuronal gain and network stability. Our work exposes how the impact of a modulation mediated by SOM neurons depends critically on circuit connectivity and the network state.