Drosophila Nanos acts as a molecular clamp that modulates the RNA-binding and repression activities of Pumilio

  1. Chase A Weidmann
  2. Chen Qiu
  3. René M Arvola
  4. Tzu-Fang Lou
  5. Jordan Killingsworth
  6. Zachary T Campbell
  7. Traci M Tanaka Hall  Is a corresponding author
  8. Aaron C Goldstrohm  Is a corresponding author
  1. University of Michigan, United States
  2. National Institutes of Health, United States
  3. University of Texas at Dallas, United States

Abstract

Collaboration among the multitude of RNA-binding proteins (RBPs) is ubiquitous, yet our understanding of these key regulatory complexes has been limited to single RBPs. We investigated combinatorial translational regulation by Drosophila Pumilio (Pum) and Nanos (Nos), which control development, fertility, and neuronal functions. Our results show how the specificity of one RBP (Pum) is modulated by cooperative RNA recognition with a second RBP (Nos) to synergistically repress mRNAs. Crystal structures of Nos-Pum-RNA complexes reveal that Nos embraces Pum and RNA, contributes sequence-specific contacts, and increases Pum RNA-binding affinity. Nos shifts the recognition sequence and promotes repression complex formation on mRNAs that are not stably bound by Pum alone, explaining the preponderance of sub-optimal Pum sites regulated in vivo. Our results illuminate the molecular mechanism of a regulatory switch controlling crucial gene expression programs, and provide a framework for understanding how the partnering of RBPs evokes changes in binding specificity that underlie regulatory network dynamics.

Article and author information

Author details

  1. Chase A Weidmann

    Department of Biological Chemistry, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Chen Qiu

    Epigenetics and Stem Cell Biology Laboratory, National Institutes of Health, Research Triangle Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. René M Arvola

    Department of Biological Chemistry, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Tzu-Fang Lou

    Department of Biological Sciences, University of Texas at Dallas, Richardson, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jordan Killingsworth

    Department of Biological Chemistry, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Zachary T Campbell

    Department of Biological Sciences, University of Texas at Dallas, Richardson, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Traci M Tanaka Hall

    Epigenetics and Stem Cell Biology Laboratory, National Institutes of Health, Research Triangle Park, United States
    For correspondence
    hall4@niehs.nih.gov
    Competing interests
    The authors declare that no competing interests exist.
  8. Aaron C Goldstrohm

    Department of Biological Chemistry, University of Michigan, Ann Arbor, United States
    For correspondence
    agoldstr@umn.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1867-8763

Funding

National Institutes of Health (NIGMS R01GM105707)

  • Chase A Weidmann
  • René M Arvola
  • Jordan Killingsworth
  • Aaron C Goldstrohm

National Institutes of Health (NRSA 5T32GM007544)

  • Chase A Weidmann
  • René M Arvola

American Cancer Society (RSG-13-080-01-RMC)

  • Chase A Weidmann
  • Aaron C Goldstrohm

National Institute of Environmental Health Sciences (Intramural Research Program)

  • Chen Qiu
  • Traci M Tanaka Hall

U.S. Department of Energy (W-31-109-Eng-38)

  • Chen Qiu
  • Traci M Tanaka Hall

National Science Foundation (DGE 1256260)

  • René M Arvola

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 4,335
    views
  • 851
    downloads
  • 62
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Chase A Weidmann
  2. Chen Qiu
  3. René M Arvola
  4. Tzu-Fang Lou
  5. Jordan Killingsworth
  6. Zachary T Campbell
  7. Traci M Tanaka Hall
  8. Aaron C Goldstrohm
(2016)
Drosophila Nanos acts as a molecular clamp that modulates the RNA-binding and repression activities of Pumilio
eLife 5:e17096.
https://doi.org/10.7554/eLife.17096

Share this article

https://doi.org/10.7554/eLife.17096

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Cristina Paissoni, Sarita Puri ... Carlo Camilloni
    Research Article

    Both immunoglobulin light-chain (LC) amyloidosis (AL) and multiple myeloma (MM) share the overproduction of a clonal LC. However, while LCs in MM remain soluble in circulation, AL LCs misfold into toxic-soluble species and amyloid fibrils that accumulate in organs, leading to distinct clinical manifestations. The significant sequence variability of LCs has hindered the understanding of the mechanisms driving LC aggregation. Nevertheless, emerging biochemical properties, including dimer stability, conformational dynamics, and proteolysis susceptibility, distinguish AL LCs from those in MM under native conditions. This study aimed to identify a2 conformational fingerprint distinguishing AL from MM LCs. Using small-angle X-ray scattering (SAXS) under native conditions, we analyzed four AL and two MM LCs. We observed that AL LCs exhibited a slightly larger radius of gyration and greater deviations from X-ray crystallography-determined or predicted structures, reflecting enhanced conformational dynamics. SAXS data, integrated with molecular dynamics simulations, revealed a conformational ensemble where LCs adopt multiple states, with variable and constant domains either bent or straight. AL LCs displayed a distinct, low-populated, straight conformation (termed H state), which maximized solvent accessibility at the interface between constant and variable domains. Hydrogen-deuterium exchange mass spectrometry experimentally validated this H state. These findings reconcile diverse experimental observations and provide a precise structural target for future drug design efforts.

    1. Structural Biology and Molecular Biophysics
    Kingsley Y Wu, Ta I Hung, Chia-en A Chang
    Research Article

    PROteolysis TArgeting Chimeras (PROTACs) are small molecules that induce target protein degradation via the ubiquitin-proteasome system. PROTACs recruit the target protein and E3 ligase; a critical first step is forming a ternary complex. However, while the formation of a ternary complex is crucial, it may not always guarantee successful protein degradation. The dynamics of the PROTAC-induced degradation complex play a key role in ubiquitination and subsequent degradation. In this study, we computationally modelled protein complex structures and dynamics associated with a series of PROTACs featuring different linkers to investigate why these PROTACs, all of which formed ternary complexes with Cereblon (CRBN) E3 ligase and the target protein bromodomain-containing protein 4 (BRD4BD1), exhibited varying degrees of degradation potency. We constructed the degradation machinery complexes with Culling-Ring Ligase 4A (CRL4A) E3 ligase scaffolds. Through atomistic molecular dynamics simulations, we illustrated how PROTAC-dependent protein dynamics facilitating the arrangement of surface lysine residues of BRD4BD1 into the catalytic pocket of E2/ubiquitin cascade for ubiquitination. Despite featuring identical warheads in this PROTAC series, the linkers were found to affect the residue-interaction networks, and thus governing the essential motions of the entire degradation machine for ubiquitination. These findings offer a structural dynamic perspective on ligand-induced protein degradation, providing insights to guide future PROTAC design endeavors.