Drosophila Nanos acts as a molecular clamp that modulates the RNA-binding and repression activities of Pumilio

  1. Chase A Weidmann
  2. Chen Qiu
  3. René M Arvola
  4. Tzu-Fang Lou
  5. Jordan Killingsworth
  6. Zachary T Campbell
  7. Traci M Tanaka Hall  Is a corresponding author
  8. Aaron C Goldstrohm  Is a corresponding author
  1. University of Michigan, United States
  2. National Institutes of Health, United States
  3. University of Texas at Dallas, United States

Abstract

Collaboration among the multitude of RNA-binding proteins (RBPs) is ubiquitous, yet our understanding of these key regulatory complexes has been limited to single RBPs. We investigated combinatorial translational regulation by Drosophila Pumilio (Pum) and Nanos (Nos), which control development, fertility, and neuronal functions. Our results show how the specificity of one RBP (Pum) is modulated by cooperative RNA recognition with a second RBP (Nos) to synergistically repress mRNAs. Crystal structures of Nos-Pum-RNA complexes reveal that Nos embraces Pum and RNA, contributes sequence-specific contacts, and increases Pum RNA-binding affinity. Nos shifts the recognition sequence and promotes repression complex formation on mRNAs that are not stably bound by Pum alone, explaining the preponderance of sub-optimal Pum sites regulated in vivo. Our results illuminate the molecular mechanism of a regulatory switch controlling crucial gene expression programs, and provide a framework for understanding how the partnering of RBPs evokes changes in binding specificity that underlie regulatory network dynamics.

Article and author information

Author details

  1. Chase A Weidmann

    Department of Biological Chemistry, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Chen Qiu

    Epigenetics and Stem Cell Biology Laboratory, National Institutes of Health, Research Triangle Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. René M Arvola

    Department of Biological Chemistry, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Tzu-Fang Lou

    Department of Biological Sciences, University of Texas at Dallas, Richardson, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jordan Killingsworth

    Department of Biological Chemistry, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Zachary T Campbell

    Department of Biological Sciences, University of Texas at Dallas, Richardson, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Traci M Tanaka Hall

    Epigenetics and Stem Cell Biology Laboratory, National Institutes of Health, Research Triangle Park, United States
    For correspondence
    hall4@niehs.nih.gov
    Competing interests
    The authors declare that no competing interests exist.
  8. Aaron C Goldstrohm

    Department of Biological Chemistry, University of Michigan, Ann Arbor, United States
    For correspondence
    agoldstr@umn.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1867-8763

Funding

National Institutes of Health (NIGMS R01GM105707)

  • Chase A Weidmann
  • René M Arvola
  • Jordan Killingsworth
  • Aaron C Goldstrohm

National Institutes of Health (NRSA 5T32GM007544)

  • Chase A Weidmann
  • René M Arvola

American Cancer Society (RSG-13-080-01-RMC)

  • Chase A Weidmann
  • Aaron C Goldstrohm

National Institute of Environmental Health Sciences (Intramural Research Program)

  • Chen Qiu
  • Traci M Tanaka Hall

U.S. Department of Energy (W-31-109-Eng-38)

  • Chen Qiu
  • Traci M Tanaka Hall

National Science Foundation (DGE 1256260)

  • René M Arvola

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Leemor Joshua-Tor, Cold Spring Harbor Laboratory, United States

Version history

  1. Received: April 20, 2016
  2. Accepted: August 1, 2016
  3. Accepted Manuscript published: August 2, 2016 (version 1)
  4. Version of Record published: August 23, 2016 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 4,087
    views
  • 831
    downloads
  • 57
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Chase A Weidmann
  2. Chen Qiu
  3. René M Arvola
  4. Tzu-Fang Lou
  5. Jordan Killingsworth
  6. Zachary T Campbell
  7. Traci M Tanaka Hall
  8. Aaron C Goldstrohm
(2016)
Drosophila Nanos acts as a molecular clamp that modulates the RNA-binding and repression activities of Pumilio
eLife 5:e17096.
https://doi.org/10.7554/eLife.17096

Share this article

https://doi.org/10.7554/eLife.17096

Further reading

    1. Developmental Biology
    2. Structural Biology and Molecular Biophysics
    Arne Elofsson, Ling Han ... Luca Jovine
    Research Article

    A crucial event in sexual reproduction is when haploid sperm and egg fuse to form a new diploid organism at fertilization. In mammals, direct interaction between egg JUNO and sperm IZUMO1 mediates gamete membrane adhesion, yet their role in fusion remains enigmatic. We used AlphaFold to predict the structure of other extracellular proteins essential for fertilization to determine if they could form a complex that may mediate fusion. We first identified TMEM81, whose gene is expressed by mouse and human spermatids, as a protein having structural homologies with both IZUMO1 and another sperm molecule essential for gamete fusion, SPACA6. Using a set of proteins known to be important for fertilization and TMEM81, we then systematically searched for predicted binary interactions using an unguided approach and identified a pentameric complex involving sperm IZUMO1, SPACA6, TMEM81 and egg JUNO, CD9. This complex is structurally consistent with both the expected topology on opposing gamete membranes and the location of predicted N-glycans not modeled by AlphaFold-Multimer, suggesting that its components could organize into a synapse-like assembly at the point of fusion. Finally, the structural modeling approach described here could be more generally useful to gain insights into transient protein complexes difficult to detect experimentally.

    1. Structural Biology and Molecular Biophysics
    Thuy TM Ngo, Bailey Liu ... Taekjip Ha
    Research Article

    The organization of nucleosomes into chromatin and their accessibility are shaped by local DNA mechanics. Conversely, nucleosome positions shape genetic variations, which may originate from mismatches during replication and chemical modification of DNA. To investigate how DNA mismatches affect the mechanical stability and the exposure of nucleosomal DNA, we used an optical trap combined with single-molecule FRET and a single-molecule FRET cyclization assay. We found that a single base-pair C-C mismatch enhances DNA bendability and nucleosome mechanical stability for the 601-nucleosome positioning sequence. An increase in force required for DNA unwrapping from the histone core is observed for single base-pair C-C mismatches placed at three tested positions: at the inner turn, at the outer turn, or at the junction of the inner and outer turn of the nucleosome. The results support a model where nucleosomal DNA accessibility is reduced by mismatches, potentially explaining the preferred accumulation of single-nucleotide substitutions in the nucleosome core and serving as the source of genetic variation during evolution and cancer progression. Mechanical stability of an intact nucleosome, that is mismatch-free, is also dependent on the species as we find that yeast nucleosomes are mechanically less stable and more symmetrical in the outer turn unwrapping compared to Xenopus nucleosomes.