Protein arginine methylation facilitates KCNQ channel-PIP2 interaction leading to seizure suppression

  1. Hyun-Ji Kim
  2. Myong-Ho Jeong
  3. Kyung-Ran Kim
  4. Chang-Yun Jung
  5. Seul-Yi Lee
  6. Hanna Kim
  7. Jewoo Koh
  8. Tuan Anh Vuong
  9. Seungmoon Jung
  10. Hyunwoo Yang
  11. Su-Kyung Park
  12. Dahee Choi
  13. Sung Hun Kim
  14. KyeongJin Kang
  15. Jong-Woo Sohn
  16. Joo Min Park
  17. Daejong Jeon
  18. Seung-Hoi Koo
  19. Won-Kyung Ho
  20. Jong-Sun Kang  Is a corresponding author
  21. Seong-Tae Kim  Is a corresponding author
  22. Hana Cho  Is a corresponding author
  1. Sungkyunkwan University School of Medicine, Republic of Korea
  2. Seoul National University Medical Research Center, Republic of Korea
  3. Korea Advanced Institute of Science and Technology, Republic of Korea
  4. Kangwon National University, Republic of Korea
  5. Institute for Basic Science, Republic of Korea
  6. Seoul National University Hospital, Republic of Korea
  7. Korea University, Republic of Korea

Abstract

KCNQ channels are critical determinants of neuronal excitability, thus emerging as a novel target of anti-epileptic drugs. To date, the mechanisms of KCNQ channel modulation have been mostly characterized to be inhibitory via Gq-coupled receptors, Ca2+/CaM, and protein kinase C. Here we demonstrate that methylation of KCNQ by protein arginine methyltransferase 1 (Prmt1) positively regulates KCNQ channel activity, thereby preventing neuronal hyperexcitability. Prmt1+/- mice exhibit epileptic seizures. Methylation of KCNQ2 channels at 4 arginine residues by Prmt1 enhances PIP2 binding, and Prmt1 depletion lowers PIP2 affinity of KCNQ2 channels and thereby the channel activities. Consistently, exogenous PIP2 addition to Prmt1+/- neurons restores KCNQ currents and neuronal excitability to the WT level. Collectively, we propose that Prmt1-dependent facilitation of KCNQ-PIP2 interaction underlies the positive regulation of KCNQ activity by arginine methylation, which may serve as a key target for prevention of neuronal hyperexcitability and seizures.

Article and author information

Author details

  1. Hyun-Ji Kim

    Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  2. Myong-Ho Jeong

    Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  3. Kyung-Ran Kim

    Department of Physiology, Seoul National University Medical Research Center, Seoul, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  4. Chang-Yun Jung

    Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  5. Seul-Yi Lee

    Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  6. Hanna Kim

    Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  7. Jewoo Koh

    Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4977-3728
  8. Tuan Anh Vuong

    Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  9. Seungmoon Jung

    Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  10. Hyunwoo Yang

    Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  11. Su-Kyung Park

    Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  12. Dahee Choi

    Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7672-461X
  13. Sung Hun Kim

    Department of Neurology, Kangwon National University, Chuncheon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  14. KyeongJin Kang

    Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0446-469X
  15. Jong-Woo Sohn

    Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  16. Joo Min Park

    Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  17. Daejong Jeon

    Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  18. Seung-Hoi Koo

    Division of Life Sciences, Korea University, Seoul, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  19. Won-Kyung Ho

    Department of Physiology, Seoul National University Medical Research Center, Seoul, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1568-1710
  20. Jong-Sun Kang

    Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
    For correspondence
    kangj01@skku.edu
    Competing interests
    The authors declare that no competing interests exist.
  21. Seong-Tae Kim

    Departments of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
    For correspondence
    stkim@skku.edu
    Competing interests
    The authors declare that no competing interests exist.
  22. Hana Cho

    Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
    For correspondence
    hanacho@skku.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9394-8671

Funding

National Research Foundation of Korea (NRF-2012R1A2A2A01046878)

  • Hyun-Ji Kim
  • Seul-Yi Lee
  • Hanna Kim
  • Jewoo Koh
  • Hana Cho

National Research Foundation of Korea (NRF-2015R1A2A1A15051998)

  • Myong-Ho Jeong
  • Tuan Anh Vuong
  • Jong-Sun Kang

National Research Foundation of Korea (2015-048055)

  • Kyung-Ran Kim
  • Won-Kyung Ho

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were approved by the Institutional Animal Care and Research Advisory Committee at Sungkyunkwan University School of Medicine Laboratory Animal Research Center (Approval No. IACUC-11-39).

Copyright

© 2016, Kim et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,742
    views

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hyun-Ji Kim
  2. Myong-Ho Jeong
  3. Kyung-Ran Kim
  4. Chang-Yun Jung
  5. Seul-Yi Lee
  6. Hanna Kim
  7. Jewoo Koh
  8. Tuan Anh Vuong
  9. Seungmoon Jung
  10. Hyunwoo Yang
  11. Su-Kyung Park
  12. Dahee Choi
  13. Sung Hun Kim
  14. KyeongJin Kang
  15. Jong-Woo Sohn
  16. Joo Min Park
  17. Daejong Jeon
  18. Seung-Hoi Koo
  19. Won-Kyung Ho
  20. Jong-Sun Kang
  21. Seong-Tae Kim
  22. Hana Cho
(2016)
Protein arginine methylation facilitates KCNQ channel-PIP2 interaction leading to seizure suppression
eLife 5:e17159.
https://doi.org/10.7554/eLife.17159

Share this article

https://doi.org/10.7554/eLife.17159

Further reading

    1. Neuroscience
    Cristina Gil Avila, Elisabeth S May ... Markus Ploner
    Research Article

    Chronic pain is a prevalent and debilitating condition whose neural mechanisms are incompletely understood. An imbalance of cerebral excitation and inhibition (E/I), particularly in the medial prefrontal cortex (mPFC), is believed to represent a crucial mechanism in the development and maintenance of chronic pain. Thus, identifying a non-invasive, scalable marker of E/I could provide valuable insights into the neural mechanisms of chronic pain and aid in developing clinically useful biomarkers. Recently, the aperiodic component of the electroencephalography (EEG) power spectrum has been proposed to represent a non-invasive proxy for E/I. We, therefore, assessed the aperiodic component in the mPFC of resting-state EEG recordings in 149 people with chronic pain and 115 healthy participants. We found robust evidence against differences in the aperiodic component in the mPFC between people with chronic pain and healthy participants, and no correlation between the aperiodic component and pain intensity. These findings were consistent across different subtypes of chronic pain and were similarly found in a whole-brain analysis. Their robustness was supported by preregistration and multiverse analyses across many different methodological choices. Together, our results suggest that the EEG aperiodic component does not differentiate between people with chronic pain and healthy individuals. These findings and the rigorous methodological approach can guide future studies investigating non-invasive, scalable markers of cerebral dysfunction in people with chronic pain and beyond.

    1. Neuroscience
    Gyeong Hee Pyeon, Hyewon Cho ... Yong Sang Jo
    Research Article

    Recent studies suggest that calcitonin gene-related peptide (CGRP) neurons in the parabrachial nucleus (PBN) represent aversive information and signal a general alarm to the forebrain. If CGRP neurons serve as a true general alarm, their activation would modulate both passive nad active defensive behaviors depending on the magnitude and context of the threat. However, most prior research has focused on the role of CGRP neurons in passive freezing responses, with limited exploration of their involvement in active defensive behaviors. To address this, we examined the role of CGRP neurons in active defensive behavior using a predator-like robot programmed to chase mice. Our electrophysiological results revealed that CGRP neurons encode the intensity of aversive stimuli through variations in firing durations and amplitudes. Optogenetic activation of CGRP neuron during robot chasing elevated flight responses in both conditioning and retention tests, presumably by amyplifying the perception of the threat as more imminent and dangerous. In contrast, animals with inactivated CGRP neurons exhibited reduced flight responses, even when the robot was programmed to appear highly threatening during conditioning. These findings expand the understanding of CGRP neurons in the PBN as a critical alarm system, capable of dynamically regulating active defensive behaviors by amplifying threat perception, ensuring adaptive responses to varying levels of danger.