Protein arginine methylation facilitates KCNQ channel-PIP2 interaction leading to seizure suppression

  1. Hyun-Ji Kim
  2. Myong-Ho Jeong
  3. Kyung-Ran Kim
  4. Chang-Yun Jung
  5. Seul-Yi Lee
  6. Hanna Kim
  7. Jewoo Koh
  8. Tuan Anh Vuong
  9. Seungmoon Jung
  10. Hyunwoo Yang
  11. Su-Kyung Park
  12. Dahee Choi
  13. Sung Hun Kim
  14. KyeongJin Kang
  15. Jong-Woo Sohn
  16. Joo Min Park
  17. Daejong Jeon
  18. Seung-Hoi Koo
  19. Won-Kyung Ho
  20. Jong-Sun Kang  Is a corresponding author
  21. Seong-Tae Kim  Is a corresponding author
  22. Hana Cho  Is a corresponding author
  1. Sungkyunkwan University School of Medicine, Republic of Korea
  2. Seoul National University Medical Research Center, Republic of Korea
  3. Korea Advanced Institute of Science and Technology, Republic of Korea
  4. Kangwon National University, Republic of Korea
  5. Institute for Basic Science, Republic of Korea
  6. Seoul National University Hospital, Republic of Korea
  7. Korea University, Republic of Korea

Abstract

KCNQ channels are critical determinants of neuronal excitability, thus emerging as a novel target of anti-epileptic drugs. To date, the mechanisms of KCNQ channel modulation have been mostly characterized to be inhibitory via Gq-coupled receptors, Ca2+/CaM, and protein kinase C. Here we demonstrate that methylation of KCNQ by protein arginine methyltransferase 1 (Prmt1) positively regulates KCNQ channel activity, thereby preventing neuronal hyperexcitability. Prmt1+/- mice exhibit epileptic seizures. Methylation of KCNQ2 channels at 4 arginine residues by Prmt1 enhances PIP2 binding, and Prmt1 depletion lowers PIP2 affinity of KCNQ2 channels and thereby the channel activities. Consistently, exogenous PIP2 addition to Prmt1+/- neurons restores KCNQ currents and neuronal excitability to the WT level. Collectively, we propose that Prmt1-dependent facilitation of KCNQ-PIP2 interaction underlies the positive regulation of KCNQ activity by arginine methylation, which may serve as a key target for prevention of neuronal hyperexcitability and seizures.

Article and author information

Author details

  1. Hyun-Ji Kim

    Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  2. Myong-Ho Jeong

    Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  3. Kyung-Ran Kim

    Department of Physiology, Seoul National University Medical Research Center, Seoul, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  4. Chang-Yun Jung

    Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  5. Seul-Yi Lee

    Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  6. Hanna Kim

    Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  7. Jewoo Koh

    Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4977-3728
  8. Tuan Anh Vuong

    Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  9. Seungmoon Jung

    Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  10. Hyunwoo Yang

    Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  11. Su-Kyung Park

    Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  12. Dahee Choi

    Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7672-461X
  13. Sung Hun Kim

    Department of Neurology, Kangwon National University, Chuncheon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  14. KyeongJin Kang

    Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0446-469X
  15. Jong-Woo Sohn

    Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  16. Joo Min Park

    Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  17. Daejong Jeon

    Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  18. Seung-Hoi Koo

    Division of Life Sciences, Korea University, Seoul, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  19. Won-Kyung Ho

    Department of Physiology, Seoul National University Medical Research Center, Seoul, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1568-1710
  20. Jong-Sun Kang

    Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
    For correspondence
    kangj01@skku.edu
    Competing interests
    The authors declare that no competing interests exist.
  21. Seong-Tae Kim

    Departments of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
    For correspondence
    stkim@skku.edu
    Competing interests
    The authors declare that no competing interests exist.
  22. Hana Cho

    Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
    For correspondence
    hanacho@skku.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9394-8671

Funding

National Research Foundation of Korea (NRF-2012R1A2A2A01046878)

  • Hyun-Ji Kim
  • Seul-Yi Lee
  • Hanna Kim
  • Jewoo Koh
  • Hana Cho

National Research Foundation of Korea (NRF-2015R1A2A1A15051998)

  • Myong-Ho Jeong
  • Tuan Anh Vuong
  • Jong-Sun Kang

National Research Foundation of Korea (2015-048055)

  • Kyung-Ran Kim
  • Won-Kyung Ho

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were approved by the Institutional Animal Care and Research Advisory Committee at Sungkyunkwan University School of Medicine Laboratory Animal Research Center (Approval No. IACUC-11-39).

Copyright

© 2016, Kim et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,763
    views
  • 725
    downloads
  • 36
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hyun-Ji Kim
  2. Myong-Ho Jeong
  3. Kyung-Ran Kim
  4. Chang-Yun Jung
  5. Seul-Yi Lee
  6. Hanna Kim
  7. Jewoo Koh
  8. Tuan Anh Vuong
  9. Seungmoon Jung
  10. Hyunwoo Yang
  11. Su-Kyung Park
  12. Dahee Choi
  13. Sung Hun Kim
  14. KyeongJin Kang
  15. Jong-Woo Sohn
  16. Joo Min Park
  17. Daejong Jeon
  18. Seung-Hoi Koo
  19. Won-Kyung Ho
  20. Jong-Sun Kang
  21. Seong-Tae Kim
  22. Hana Cho
(2016)
Protein arginine methylation facilitates KCNQ channel-PIP2 interaction leading to seizure suppression
eLife 5:e17159.
https://doi.org/10.7554/eLife.17159

Share this article

https://doi.org/10.7554/eLife.17159

Further reading

    1. Neuroscience
    Franziska Auer, Katherine Nardone ... David Schoppik
    Research Article

    Cerebellar dysfunction leads to postural instability. Recent work in freely moving rodents has transformed investigations of cerebellar contributions to posture. However, the combined complexity of terrestrial locomotion and the rodent cerebellum motivate new approaches to perturb cerebellar function in simpler vertebrates. Here, we adapted a validated chemogenetic tool (TRPV1/capsaicin) to describe the role of Purkinje cells — the output neurons of the cerebellar cortex — as larval zebrafish swam freely in depth. We achieved both bidirectional control (activation and ablation) of Purkinje cells while performing quantitative high-throughput assessment of posture and locomotion. Activation modified postural control in the pitch (nose-up/nose-down) axis. Similarly, ablations disrupted pitch-axis posture and fin-body coordination responsible for climbs. Postural disruption was more widespread in older larvae, offering a window into emergent roles for the developing cerebellum in the control of posture. Finally, we found that activity in Purkinje cells could individually and collectively encode tilt direction, a key feature of postural control neurons. Our findings delineate an expected role for the cerebellum in postural control and vestibular sensation in larval zebrafish, establishing the validity of TRPV1/capsaicin-mediated perturbations in a simple, genetically tractable vertebrate. Moreover, by comparing the contributions of Purkinje cell ablations to posture in time, we uncover signatures of emerging cerebellar control of posture across early development. This work takes a major step towards understanding an ancestral role of the cerebellum in regulating postural maturation.

    1. Neuroscience
    Gáspár Oláh, Rajmund Lákovics ... Gábor Tamás
    Research Article

    Human-specific cognitive abilities depend on information processing in the cerebral cortex, where the neurons are significantly larger and their processes longer and sparser compared to rodents. We found that, in synaptically connected layer 2/3 pyramidal cells (L2/3 PCs), the delay in signal propagation from soma to soma is similar in humans and rodents. To compensate for the longer processes of neurons, membrane potential changes in human axons and/or dendrites must propagate faster. Axonal and dendritic recordings show that the propagation speed of action potentials (APs) is similar in human and rat axons, but the forward propagation of excitatory postsynaptic potentials (EPSPs) and the backward propagation of APs are 26 and 47% faster in human dendrites, respectively. Experimentally-based detailed biophysical models have shown that the key factor responsible for the accelerated EPSP propagation in human cortical dendrites is the large conductance load imposed at the soma by the large basal dendritic tree. Additionally, larger dendritic diameters and differences in cable and ion channel properties in humans contribute to enhanced signal propagation. Our integrative experimental and modeling study provides new insights into the scaling rules that help maintain information processing speed albeit the large and sparse neurons in the human cortex.