The exon junction complex regulates the splicing of cell polarity gene dlg1 to control Wingless signaling in development

  1. Min Liu
  2. Yajuan Li
  3. Aiguo Liu
  4. Ruifeng Li
  5. Ying Su
  6. Juan Du
  7. Cheng Li
  8. Alan Jian Zhu  Is a corresponding author
  1. Peking University, China
  2. Ocean University of China, China

Abstract

Wingless (Wg)/Wnt signaling is conserved in all metazoan animals and plays critical roles in development. The Wg/Wnt morphogen reception is essential for signal activation, whose activity is mediated through the receptor complex and a scaffold protein Dishevelled (Dsh). We report here that the exon junction complex (EJC) activity is indispensable for Wg signaling by maintaining an appropriate level of Dsh protein for Wg ligand reception in Drosophila. Transcriptome analyses in Drosophila wing imaginal discs indicate that the EJC controls the splicing of the cell polarity gene discs large 1 (dlg1), whose coding prote¬in directly interacts with Dsh. Genetic and biochemical experiments demonstrate that Dlg1 protein acts independently from its role in cell polarity to protect Dsh protein from lysosomal degradation. More importantly, human orthologous Dlg protein is sufficient to promote Dvl protein stabilization and Wnt signaling activity, thus revealing a conserved regulatory mechanism of Wg/Wnt signaling by Dlg and EJC.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Min Liu

    State Key Laboratory of Membrane Biology, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Yajuan Li

    State Key Laboratory of Membrane Biology, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Aiguo Liu

    State Key Laboratory of Membrane Biology, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Ruifeng Li

    Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Ying Su

    Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Juan Du

    State Key Laboratory of Membrane Biology, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Cheng Li

    Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Alan Jian Zhu

    State Key Laboratory of Membrane Biology, Peking University, Beijing, China
    For correspondence
    zhua@pku.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8208-1729

Funding

State Key Laboratory of Membrane Biology of the People's Republic of China (Grant)

  • Alan Jian Zhu

Peking-Tsinghua Center for Life Sciences (Grant)

  • Cheng Li
  • Alan Jian Zhu

Ministry of Science and Technology of the People's Republic of China (2014CB942804)

  • Alan Jian Zhu

National Science Foundation of the People's Republic of China (31371410)

  • Alan Jian Zhu

National Science Foundation of the People's Republic of China (31401241)

  • Min Liu

China Postdoctoral Science Foundation (Postdoctoral Fellowship, 2014M550556)

  • Min Liu

Peking-Tsinghua Center for Life Sciences (Postdoctoral Fellowship)

  • Min Liu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Liu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,313
    views
  • 533
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Min Liu
  2. Yajuan Li
  3. Aiguo Liu
  4. Ruifeng Li
  5. Ying Su
  6. Juan Du
  7. Cheng Li
  8. Alan Jian Zhu
(2016)
The exon junction complex regulates the splicing of cell polarity gene dlg1 to control Wingless signaling in development
eLife 5:e17200.
https://doi.org/10.7554/eLife.17200

Share this article

https://doi.org/10.7554/eLife.17200

Further reading

    1. Cell Biology
    Tamás Visnovitz, Dorina Lenzinger ... Edit I Buzas
    Short Report

    Recent studies showed an unexpected complexity of extracellular vesicle (EV) biogenesis pathways. We previously found evidence that human colorectal cancer cells in vivo release large multivesicular body-like structures en bloc. Here, we tested whether this large EV type is unique to colorectal cancer cells. We found that all cell types we studied (including different cell lines and cells in their original tissue environment) released multivesicular large EVs (MV-lEVs). We also demonstrated that upon spontaneous rupture of the limiting membrane of the MV-lEVs, their intraluminal vesicles (ILVs) escaped to the extracellular environment by a ‘torn bag mechanism’. We proved that the MV-lEVs were released by ectocytosis of amphisomes (hence, we termed them amphiectosomes). Both ILVs of amphiectosomes and small EVs separated from conditioned media were either exclusively CD63 or LC3B positive. According to our model, upon fusion of multivesicular bodies with autophagosomes, fragments of the autophagosomal inner membrane curl up to form LC3B positive ILVs of amphisomes, while CD63 positive small EVs are of multivesicular body origin. Our data suggest a novel common release mechanism for small EVs, distinct from the exocytosis of multivesicular bodies or amphisomes, as well as the small ectosome release pathway.

    1. Cell Biology
    Yajun Zhai, Peiyi Liu ... Gongzheng Hu
    Research Article

    Discovering new strategies to combat the multidrug-resistant bacteria constitutes a major medical challenge of our time. Previously, artesunate (AS) has been reported to exert antibacterial enhancement activity in combination with β-lactam antibiotics via inhibition of the efflux pump AcrB. However, combination of AS and colistin (COL) revealed a weak synergistic effect against a limited number of strains, and few studies have further explored its possible mechanism of synergistic action. In this article, we found that AS and EDTA could strikingly enhance the antibacterial effects of COL against mcr-1- and mcr-1+ Salmonella strains either in vitro or in vivo, when used in triple combination. The excellent bacteriostatic effect was primarily related to the increased cell membrane damage, accumulation of toxic compounds and inhibition of MCR-1. The potential binding sites of AS to MCR-1 (THR283, SER284, and TYR287) were critical for its inhibition of MCR-1 activity. Additionally, we also demonstrated that the CheA of chemosensory system and virulence-related protein SpvD were critical for the bacteriostatic synergistic effects of the triple combination. Selectively targeting CheA, SpvD, or MCR using the natural compound AS could be further investigated as an attractive strategy for the treatment of Salmonella infection. Collectively, our work opens new avenues toward the potentiation of COL and reveals an alternative drug combination strategy to overcome COL-resistant bacterial infections.