Physical limits to magnetogenetics

  1. Markus Meister  Is a corresponding author
  1. California Institute of Technology, United States
2 figures and 1 table


A TRPV4 channel (pink) inserted in the membrane with a ferritin complex (green) attached on the cytoplasmic side, approximately to scale.

The magnetic field B induces a moment m in the ferritin core, leading to a force F or a torque N on the ferritin particle, and resulting forces tugging on the channel. See text for details.
The steady-state temperature profile around a heated sphere in an infinite bath varies inversely with the distance from the center of the sphere.

The same argument applies to a ferritin sphere heated from its magnetic core (top) and a spherical cell with a large number of heated ferritins on its surface (bottom).


Table 1

Published measurements of specific loss power (SLP) for various magnetic particles of diameter d, taken at a magnetic field strength H and frequency f. The values in the column “SLP corr” are corrected for the field and frequency used by Stanley et al. (2015).
SLP corr [W/g]Notes
Fortin et al. (2007)Fe2O35.324.870042.8
Fortin et al. (2007)Fe2O36.724.87001410
Fortin et al. (2007)Fe2O3824.87003726
Fantechi et al. (2015)Fe3O48121836.575
Hergt et al. (2004)Fe2O37154101549
Fantechi et al. (2014)ferritin with Fe3O4612.4183<0.01<0.1per mass of only the metal ions
Fantechi et al. (2014)ferritin with Co0.15Fe2.85O46.812.41832.8130per mass of only the metal ions

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Markus Meister
Physical limits to magnetogenetics
eLife 5:e17210.