Automated structure refinement of macromolecular assemblies from cryo-EM maps using Rosetta

  1. Ray Yu-Ruei Wang
  2. Yifan Song
  3. Benjamin A Barad
  4. Yifan Cheng
  5. James S Fraser
  6. Frank DiMaio  Is a corresponding author
  1. University of California, San Francisco, United States
  2. Cyrus Biotechnology, United States
  3. University of Washington, United States

Abstract

Cryo-EM has revealed the structures of many challenging yet exciting macromolecular assemblies at near-atomic resolution (3-4.5Å), providing biological phenomena with molecular descriptions. However, at these resolutions accurately positioning individual atoms remains challenging and error-prone. Manually refining thousands of amino acids - typical in a macromolecular assembly - is tedious and time-consuming. We present an automated method that can improve the atomic details in models manually built in near-atomic-resolution cryo-EM maps. Applying the method to three systems recently solved by cryo-EM, we are able to improve model geometry while maintaining the fit-to-density. Backbone placement errors are automatically detected and corrected, and the refinement shows a large radius of convergence. The results demonstrate the method is amenable to structures with symmetry, of very large size, and containing RNA as well as covalently bound ligands. The method should streamline the cryo-EM structure determination process, providing accurate and unbiased atomic structure interpretation of such maps.

Data availability

The following previously published data sets were used

Article and author information

Author details

  1. Ray Yu-Ruei Wang

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5025-9596
  2. Yifan Song

    Cyrus Biotechnology, Seattle, United States
    Competing interests
    Yifan Song, Co-founder of Cyrus Biotechnology, Inc., which will develop and market graphic-interface software for using Rosetta.
  3. Benjamin A Barad

    Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1016-862X
  4. Yifan Cheng

    Keck Advanced Microscopy Laboratory, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  5. James S Fraser

    Department of Bioengineering and Therapeutic Science, California Institute for Quantitative Biology, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5080-2859
  6. Frank DiMaio

    Department of Biochemistry, University of Washington, Seattle, United States
    For correspondence
    dimaio@uw.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7524-8938

Funding

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Axel T Brunger, Howard Hughes Medical Institute, Stanford University, United States

Publication history

  1. Received: April 26, 2016
  2. Accepted: September 22, 2016
  3. Accepted Manuscript published: September 26, 2016 (version 1)
  4. Version of Record published: November 18, 2016 (version 2)

Copyright

© 2016, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,210
    Page views
  • 1,191
    Downloads
  • 223
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ray Yu-Ruei Wang
  2. Yifan Song
  3. Benjamin A Barad
  4. Yifan Cheng
  5. James S Fraser
  6. Frank DiMaio
(2016)
Automated structure refinement of macromolecular assemblies from cryo-EM maps using Rosetta
eLife 5:e17219.
https://doi.org/10.7554/eLife.17219

Further reading

    1. Structural Biology and Molecular Biophysics
    Meng Shi, Jiaqi Zhao ... Song Xiang
    Research Article Updated

    The mono-ubiquitination of the histone protein H2B (H2Bub1) is a highly conserved histone post-translational modification that plays critical roles in many fundamental processes. In yeast, this modification is catalyzed by the conserved Bre1–Rad6 complex. Bre1 contains a unique N-terminal Rad6-binding domain (RBD), how it interacts with Rad6 and contributes to the H2Bub1 catalysis is unclear. Here, we present crystal structure of the Bre1 RBD–Rad6 complex and structure-guided functional studies. Our structure provides a detailed picture of the interaction between the dimeric Bre1 RBD and a single Rad6 molecule. We further found that the interaction stimulates Rad6’s enzymatic activity by allosterically increasing its active site accessibility and likely contribute to the H2Bub1 catalysis through additional mechanisms. In line with these important functions, we found that the interaction is crucial for multiple H2Bub1-regulated processes. Our study provides molecular insights into the H2Bub1 catalysis.

    1. Structural Biology and Molecular Biophysics
    Abhilash Padavannil, Anjaneyulu Murari ... James A Letts
    Research Article

    Respiratory complex I is a proton-pumping oxidoreductase key to bioenergetic metabolism. Biochemical studies have found a divide in the behavior of complex I in metazoans that aligns with the evolutionary split between Protostomia and Deuterostomia. Complex I from Deuterostomia including mammals can adopt a biochemically defined off-pathway ‘deactive’ state, whereas complex I from Protostomia cannot. The presence of off-pathway states complicates the interpretation of structural results and has led to considerable mechanistic debate. Here, we report the structure of mitochondrial complex I from the thoracic muscles of the model protostome Drosophila melanogaster. We show that although D. melanogaster complex I (Dm-CI) does not have a NEM-sensitive deactive state, it does show slow activation kinetics indicative of an off-pathway resting state. The resting-state structure of Dm-CI from the thoracic muscle reveals multiple conformations. We identify a helix-locked state in which an N-terminal α-helix on the NDUFS4 subunit wedges between the peripheral and membrane arms. Comparison of the Dm-CI structure and conformational states to those observed in bacteria, yeast, and mammals provides insight into the roles of subunits across organisms, explains why the Dm-CI off-pathway resting state is NEM insensitive, and raises questions regarding current mechanistic models of complex I turnover.