1. Neuroscience
Download icon

Attention operates uniformly throughout the classical receptive field and the surround

  1. Bram-Ernst Verhoef  Is a corresponding author
  2. John HR Maunsell
  1. The University of Chicago, United States
Research Article
  • Cited 11
  • Views 1,166
  • Annotations
Cite this article as: eLife 2016;5:e17256 doi: 10.7554/eLife.17256

Abstract

Shifting attention between visual stimuli at different locations modulates neuronal responses in heterogeneous ways, depending on where those stimuli lie within the receptive fields of neurons. Yet how attention interacts with the receptive-field structure of cortical neurons remains unclear. We measured neuronal responses in area V4 while monkeys shifted their attention between stimuli placed in different locations within and around neuronal receptive fields. We found that attention interacts uniformly with the spatially-varying excitation and suppression associated with the receptive field. This interaction explained the large variability in attention modulation across neurons, and a non-additive relationship between stimulus selectivity, stimulus-induced suppression and attention modulation that has not been previously described. A spatially-tuned normalization model precisely accounted for all observed attention modulations and for the spatial summation properties of neurons. These results provide a unified account of spatial summation and attention-related modulation across both the classical receptive field and the surround.

Article and author information

Author details

  1. Bram-Ernst Verhoef

    Department of Neurobiology, The University of Chicago, Chicago, United States
    For correspondence
    verhoef@uchicago.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3535-9008
  2. John HR Maunsell

    Department of Neurobiology, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0018-4439

Funding

Fonds Wetenschappelijk Onderzoek

  • Bram-Ernst Verhoef

National Institutes of Health (R01EY005911)

  • John HR Maunsell

National Institutes of Health (R01EY021550)

  • John HR Maunsell

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations inthe Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All procedures were approved by theInstitutional Animal Care and Use Committee of Harvard Medical School (Boston, MA; protocol #04214).

Reviewing Editor

  1. Doris Y Tsao, California Institute of Technology, United States

Publication history

  1. Received: April 26, 2016
  2. Accepted: August 20, 2016
  3. Accepted Manuscript published: August 22, 2016 (version 1)
  4. Version of Record published: September 13, 2016 (version 2)

Copyright

© 2016, Verhoef & Maunsell

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,166
    Page views
  • 327
    Downloads
  • 11
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, PubMed Central, Crossref.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Ricardo M Santos, Anton Sirota
    Research Article Updated

    Cholinergic fast time-scale modulation of cortical physiology is critical for cognition, but direct local measurement of neuromodulators in vivo is challenging. Choline oxidase (ChOx)-based electrochemical biosensors have been used to capture fast cholinergic signals in behaving animals. However, these transients might be biased by local field potential and O2-evoked enzymatic responses. Using a novel Tetrode-based Amperometric ChOx (TACO) sensor, we performed highly sensitive and selective simultaneous measurement of ChOx activity (COA) and O2. In vitro and in vivo experiments, supported by mathematical modeling, revealed that non-steady-state enzyme responses to O2 give rise to phasic COA dynamics. This mechanism accounts for most of COA transients in the hippocampus, including those following locomotion bouts and sharp-wave/ripples. Our results suggest that it is unfeasible to probe phasic cholinergic signals under most behavioral paradigms with current ChOx biosensors. This confound is generalizable to any oxidase-based biosensor, entailing rigorous controls and new biosensor designs.

    1. Neuroscience
    Nina Rouhani, Yael Niv
    Research Article

    Memory helps guide behavior, but which experiences from the past are prioritized? Classic models of learning posit that events associated with unpredictable outcomes as well as, paradoxically, predictable outcomes, deploy more attention and learning for those events. Here, we test reinforcement learning and subsequent memory for those events, and treat signed and unsigned reward prediction errors (RPEs), experienced at the reward-predictive cue or reward outcome, as drivers of these two seemingly contradictory signals. By fitting reinforcement learning models to behavior, we find that both RPEs contribute to learning by modulating a dynamically changing learning rate. We further characterize the effects of these RPE signals on memory, and show that both signed and unsigned RPEs enhance memory, in line with midbrain dopamine and locus-coeruleus modulation of hippocampal plasticity, thereby reconciling separate findings in the literature.