Satb2 determines miRNA expression and long-term memory in the adult central nervous system

  1. Clemens Jaitner
  2. Chethan Reddy
  3. Andreas Abentung
  4. Nigel Whittle
  5. Dietmar Rieder
  6. Andrea Delekate
  7. Martin Korte
  8. Gaurav Jain
  9. Andre Fischer
  10. Farahnaz Sananbenesi
  11. Isabella Cera
  12. Nicolas Singewald
  13. Georg Dechant  Is a corresponding author
  14. Galina Apostolova  Is a corresponding author
  1. Medical University of Innsbruck, Austria
  2. University of Innsbruck, Austria
  3. Technical University Braunschweig, Germany
  4. German Center for Neurodegenerative Diseases, Germany

Abstract

SATB2 is a risk locus for schizophrenia and encodes a DNA-binding protein that regulates higher-order chromatin configuration. In the adult brain Satb2 is almost exclusively expressed in pyramidal neurons of two brain regions important for memory formation, the cerebral cortex and the CA1-hippocampal field. Here we show that Satb2 is required for key hippocampal functions since deletion of Satb2 from the adult mouse forebrain prevents the stabilization of synaptic long-term potentiation and markedly impairs long-term fear and object discrimination memory. At molecular level, we find that synaptic activity and BDNF up-regulate Satb2, which itself binds to promoters of coding and non-coding genes. Satb2 controls the hippocampal levels of a large cohort of miRNAs, many of which are implicated in synaptic plasticity and memory formation. Together, our findings demonstrate that Satb2 is critically involved in long-term plasticity processes in the adult forebrain that underlie the consolidation and stabilization of context-linked memory.

Data availability

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Clemens Jaitner

    Institute for Neuroscience, Medical University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  2. Chethan Reddy

    Institute for Neuroscience, Medical University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  3. Andreas Abentung

    Institute for Neuroscience, Medical University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  4. Nigel Whittle

    Department of Pharmacology and Toxicology, University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  5. Dietmar Rieder

    Division of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  6. Andrea Delekate

    Zoological Institute, Technical University Braunschweig, Braunschweig, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8887-0806
  7. Martin Korte

    Zoological Institute, Technical University Braunschweig, Braunschweig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Gaurav Jain

    Research group for Epigenetics in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Andre Fischer

    Research group for Epigenetics in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Farahnaz Sananbenesi

    Research group for Complex Neurodegenerative Disorders, German Center for Neurodegenerative Diseases, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  11. Isabella Cera

    Institute for Neuroscience, Medical University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  12. Nicolas Singewald

    Department of Pharmacology and Toxicology, University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  13. Georg Dechant

    Institute for Neuroscience, Medical University of Innsbruck, Innsbruck, Austria
    For correspondence
    georg.dechant@i-med.ac.at
    Competing interests
    The authors declare that no competing interests exist.
  14. Galina Apostolova

    Institute for Neuroscience, Medical University of Innsbruck, Innsbruck, Austria
    For correspondence
    galina.apostolova@i-med.ac.at
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2682-4385

Funding

Austrian Science Fund (P25014-B24)

  • Galina Apostolova

Austrian Science Fund (DK W1206)

  • Georg Dechant

Austrian Science Fund (DK W1206)

  • Nicolas Singewald

Deutsche Forschungsgemeinschaft

  • Martin Korte

Innsbruck Medical University (MUI-Start 2010012004)

  • Galina Apostolova

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Anne West, Duke University School of Medicine, United States

Ethics

Animal experimentation: All animal experimentation procedures were approved by the Austrian Animal Experimentation Ethics Board (Permit Number: GZ: BMWFW-66.011/0078-WF/II/3b/2014)

Version history

  1. Received: April 28, 2016
  2. Accepted: November 28, 2016
  3. Accepted Manuscript published: November 29, 2016 (version 1)
  4. Version of Record published: January 3, 2017 (version 2)

Copyright

© 2016, Jaitner et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,325
    views
  • 815
    downloads
  • 63
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Clemens Jaitner
  2. Chethan Reddy
  3. Andreas Abentung
  4. Nigel Whittle
  5. Dietmar Rieder
  6. Andrea Delekate
  7. Martin Korte
  8. Gaurav Jain
  9. Andre Fischer
  10. Farahnaz Sananbenesi
  11. Isabella Cera
  12. Nicolas Singewald
  13. Georg Dechant
  14. Galina Apostolova
(2016)
Satb2 determines miRNA expression and long-term memory in the adult central nervous system
eLife 5:e17361.
https://doi.org/10.7554/eLife.17361

Share this article

https://doi.org/10.7554/eLife.17361

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Lucie Crhak Khaitova, Pavlina Mikulkova ... Karel Riha
    Research Article

    Heat stress is a major threat to global crop production, and understanding its impact on plant fertility is crucial for developing climate-resilient crops. Despite the known negative effects of heat stress on plant reproduction, the underlying molecular mechanisms remain poorly understood. Here, we investigated the impact of elevated temperature on centromere structure and chromosome segregation during meiosis in Arabidopsis thaliana. Consistent with previous studies, heat stress leads to a decline in fertility and micronuclei formation in pollen mother cells. Our results reveal that elevated temperature causes a decrease in the amount of centromeric histone and the kinetochore protein BMF1 at meiotic centromeres with increasing temperature. Furthermore, we show that heat stress increases the duration of meiotic divisions and prolongs the activity of the spindle assembly checkpoint during meiosis I, indicating an impaired efficiency of the kinetochore attachments to spindle microtubules. Our analysis of mutants with reduced levels of centromeric histone suggests that weakened centromeres sensitize plants to elevated temperature, resulting in meiotic defects and reduced fertility even at moderate temperatures. These results indicate that the structure and functionality of meiotic centromeres in Arabidopsis are highly sensitive to heat stress, and suggest that centromeres and kinetochores may represent a critical bottleneck in plant adaptation to increasing temperatures.

    1. Chromosomes and Gene Expression
    Allison Coté, Aoife O'Farrell ... Arjun Raj
    Research Article

    Splicing is the stepwise molecular process by which introns are removed from pre-mRNA and exons are joined together to form mature mRNA sequences. The ordering and spatial distribution of these steps remain controversial, with opposing models suggesting splicing occurs either during or after transcription. We used single-molecule RNA FISH, expansion microscopy, and live-cell imaging to reveal the spatiotemporal distribution of nascent transcripts in mammalian cells. At super-resolution levels, we found that pre-mRNA formed clouds around the transcription site. These clouds indicate the existence of a transcription-site-proximal zone through which RNA move more slowly than in the nucleoplasm. Full-length pre-mRNA undergo continuous splicing as they move through this zone following transcription, suggesting a model in which splicing can occur post-transcriptionally but still within the proximity of the transcription site, thus seeming co-transcriptional by most assays. These results may unify conflicting reports of co-transcriptional versus post-transcriptional splicing.