Satb2 determines miRNA expression and long-term memory in the adult central nervous system

  1. Clemens Jaitner
  2. Chethan Reddy
  3. Andreas Abentung
  4. Nigel Whittle
  5. Dietmar Rieder
  6. Andrea Delekate
  7. Martin Korte
  8. Gaurav Jain
  9. Andre Fischer
  10. Farahnaz Sananbenesi
  11. Isabella Cera
  12. Nicolas Singewald
  13. Georg Dechant  Is a corresponding author
  14. Galina Apostolova  Is a corresponding author
  1. Medical University of Innsbruck, Austria
  2. University of Innsbruck, Austria
  3. Technical University Braunschweig, Germany
  4. German Center for Neurodegenerative Diseases, Germany

Abstract

SATB2 is a risk locus for schizophrenia and encodes a DNA-binding protein that regulates higher-order chromatin configuration. In the adult brain Satb2 is almost exclusively expressed in pyramidal neurons of two brain regions important for memory formation, the cerebral cortex and the CA1-hippocampal field. Here we show that Satb2 is required for key hippocampal functions since deletion of Satb2 from the adult mouse forebrain prevents the stabilization of synaptic long-term potentiation and markedly impairs long-term fear and object discrimination memory. At molecular level, we find that synaptic activity and BDNF up-regulate Satb2, which itself binds to promoters of coding and non-coding genes. Satb2 controls the hippocampal levels of a large cohort of miRNAs, many of which are implicated in synaptic plasticity and memory formation. Together, our findings demonstrate that Satb2 is critically involved in long-term plasticity processes in the adult forebrain that underlie the consolidation and stabilization of context-linked memory.

Data availability

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Clemens Jaitner

    Institute for Neuroscience, Medical University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  2. Chethan Reddy

    Institute for Neuroscience, Medical University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  3. Andreas Abentung

    Institute for Neuroscience, Medical University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  4. Nigel Whittle

    Department of Pharmacology and Toxicology, University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  5. Dietmar Rieder

    Division of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  6. Andrea Delekate

    Zoological Institute, Technical University Braunschweig, Braunschweig, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8887-0806
  7. Martin Korte

    Zoological Institute, Technical University Braunschweig, Braunschweig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Gaurav Jain

    Research group for Epigenetics in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Andre Fischer

    Research group for Epigenetics in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Farahnaz Sananbenesi

    Research group for Complex Neurodegenerative Disorders, German Center for Neurodegenerative Diseases, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  11. Isabella Cera

    Institute for Neuroscience, Medical University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  12. Nicolas Singewald

    Department of Pharmacology and Toxicology, University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  13. Georg Dechant

    Institute for Neuroscience, Medical University of Innsbruck, Innsbruck, Austria
    For correspondence
    georg.dechant@i-med.ac.at
    Competing interests
    The authors declare that no competing interests exist.
  14. Galina Apostolova

    Institute for Neuroscience, Medical University of Innsbruck, Innsbruck, Austria
    For correspondence
    galina.apostolova@i-med.ac.at
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2682-4385

Funding

Austrian Science Fund (P25014-B24)

  • Galina Apostolova

Austrian Science Fund (DK W1206)

  • Georg Dechant

Austrian Science Fund (DK W1206)

  • Nicolas Singewald

Deutsche Forschungsgemeinschaft

  • Martin Korte

Innsbruck Medical University (MUI-Start 2010012004)

  • Galina Apostolova

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experimentation procedures were approved by the Austrian Animal Experimentation Ethics Board (Permit Number: GZ: BMWFW-66.011/0078-WF/II/3b/2014)

Copyright

© 2016, Jaitner et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,498
    views
  • 831
    downloads
  • 64
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Clemens Jaitner
  2. Chethan Reddy
  3. Andreas Abentung
  4. Nigel Whittle
  5. Dietmar Rieder
  6. Andrea Delekate
  7. Martin Korte
  8. Gaurav Jain
  9. Andre Fischer
  10. Farahnaz Sananbenesi
  11. Isabella Cera
  12. Nicolas Singewald
  13. Georg Dechant
  14. Galina Apostolova
(2016)
Satb2 determines miRNA expression and long-term memory in the adult central nervous system
eLife 5:e17361.
https://doi.org/10.7554/eLife.17361

Share this article

https://doi.org/10.7554/eLife.17361

Further reading

    1. Chromosomes and Gene Expression
    2. Neuroscience
    Robyn D Moir, Emilio Merheb ... Ian M Willis
    Research Article

    Pathogenic variants in subunits of RNA polymerase (Pol) III cause a spectrum of Polr3-related neurodegenerative diseases including 4H leukodystrophy. Disease onset occurs from infancy to early adulthood and is associated with a variable range and severity of neurological and non-neurological features. The molecular basis of Polr3-related disease pathogenesis is unknown. We developed a postnatal whole-body mouse model expressing pathogenic Polr3a mutations to examine the molecular mechanisms by which reduced Pol III transcription results primarily in central nervous system phenotypes. Polr3a mutant mice exhibit behavioral deficits, cerebral pathology and exocrine pancreatic atrophy. Transcriptome and immunohistochemistry analyses of cerebra during disease progression show a reduction in most Pol III transcripts, induction of innate immune and integrated stress responses and cell-type-specific gene expression changes reflecting neuron and oligodendrocyte loss and microglial activation. Earlier in the disease when integrated stress and innate immune responses are minimally induced, mature tRNA sequencing revealed a global reduction in tRNA levels and an altered tRNA profile but no changes in other Pol III transcripts. Thus, changes in the size and/or composition of the tRNA pool have a causal role in disease initiation. Our findings reveal different tissue- and brain region-specific sensitivities to a defect in Pol III transcription.

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Ting-Wen Chen, Hsiao-Wei Liao ... Chung-Te Chang
    Research Article

    The mRNA 5'-cap structure removal by the decapping enzyme DCP2 is a critical step in gene regulation. While DCP2 is the catalytic subunit in the decapping complex, its activity is strongly enhanced by multiple factors, particularly DCP1, which is the major activator in yeast. However, the precise role of DCP1 in metazoans has yet to be fully elucidated. Moreover, in humans, the specific biological functions of the two DCP1 paralogs, DCP1a and DCP1b, remain largely unknown. To investigate the role of human DCP1, we generated cell lines that were deficient in DCP1a, DCP1b, or both to evaluate the importance of DCP1 in the decapping machinery. Our results highlight the importance of human DCP1 in decapping process and show that the EVH1 domain of DCP1 enhances the mRNA-binding affinity of DCP2. Transcriptome and metabolome analyses outline the distinct functions of DCP1a and DCP1b in human cells, regulating specific endogenous mRNA targets and biological processes. Overall, our findings provide insights into the molecular mechanism of human DCP1 in mRNA decapping and shed light on the distinct functions of its paralogs.