bicoid mRNA localises to the Drosophila oocyte anterior by random Dynein-mediated transport and anchoring

  1. Vítor Trovisco
  2. Katsiaryna Belaya
  3. Dmitry Nashchekin
  4. Uwe Irion
  5. George Sirinakis
  6. Richard Butler
  7. Jack J Lee
  8. Elizabeth R Gavis
  9. Daniel St Johnston  Is a corresponding author
  1. University of Cambridge, United Kingdom
  2. University of Cambridge, Germany
  3. Princeton University, United States

Abstract

Mechanisms for mRNA localization are not well understood in vivo and studies of oskar and bicoid mRNAs have been very important in this regard. This paper builds on prior work by demonstrating that bicoid RNA is transported along microtubules by dynein. Surprisingly, this is not sufficient to account for its anterior localisation at early stages because transport is non-directional, indicating that the RNA must also be anchored specifically at the anterior. bicoid mRNA assembles into mRNP particles of characteristic size at all stages of oogenesis that may be important for its transport and anchoring. This provides a new mechanism for bicoid mRNA localization, suggests a particular role for mRNP particles, and further contributes important in vivo observations on which further hypotheses and studies can be built.

Article and author information

Author details

  1. Vítor Trovisco

    The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Katsiaryna Belaya

    The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Dmitry Nashchekin

    The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Uwe Irion

    The Gurdon Institute, University of Cambridge, Cambridge, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2823-5840
  5. George Sirinakis

    The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Richard Butler

    The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Jack J Lee

    Department of Molecular Biology, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Elizabeth R Gavis

    Department of Molecular Biology, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Daniel St Johnston

    The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    d.stjohnston@gurdon.cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5582-3301

Funding

European Commission (Seventh Framework Programme (FP7), Marie Curie Intraeuropean felowship, 236621)

  • Vítor Trovisco

Biotechnology and Biological Sciences Research Council (BBSRC/EURORNAQ , BB/F010303)

  • Daniel St Johnston

Darwin Trust Scholarship

  • Katsiaryna Belaya

Wellcome (Strategic Award, 095297)

  • George Sirinakis

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Trovisco et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,184
    views
  • 771
    downloads
  • 40
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Vítor Trovisco
  2. Katsiaryna Belaya
  3. Dmitry Nashchekin
  4. Uwe Irion
  5. George Sirinakis
  6. Richard Butler
  7. Jack J Lee
  8. Elizabeth R Gavis
  9. Daniel St Johnston
(2016)
bicoid mRNA localises to the Drosophila oocyte anterior by random Dynein-mediated transport and anchoring
eLife 5:e17537.
https://doi.org/10.7554/eLife.17537

Share this article

https://doi.org/10.7554/eLife.17537

Further reading

    1. Cell Biology
    Dharmendra Kumar Nath, Subash Dhakal, Youngseok Lee
    Research Advance

    Understanding how the brain controls nutrient storage is pivotal. Transient receptor potential (TRP) channels are conserved from insects to humans. They serve in detecting environmental shifts and in acting as internal sensors. Previously, we demonstrated the role of TRPγ in nutrient-sensing behavior (Dhakal et al., 2022). Here, we found that a TRPγ mutant exhibited in Drosophila melanogaster is required for maintaining normal lipid and protein levels. In animals, lipogenesis and lipolysis control lipid levels in response to food availability. Lipids are mostly stored as triacylglycerol in the fat bodies (FBs) of D. melanogaster. Interestingly, trpγ deficient mutants exhibited elevated TAG levels and our genetic data indicated that Dh44 neurons are indispensable for normal lipid storage but not protein storage. The trpγ mutants also exhibited reduced starvation resistance, which was attributed to insufficient lipolysis in the FBs. This could be mitigated by administering lipase or metformin orally, indicating a potential treatment pathway. Gene expression analysis indicated that trpγ knockout downregulated brummer, a key lipolytic gene, resulting in chronic lipolytic deficits in the gut and other fat tissues. The study also highlighted the role of specific proteins, including neuropeptide DH44 and its receptor DH44R2 in lipid regulation. Our findings provide insight into the broader question of how the brain and gut regulate nutrient storage.

    1. Cell Biology
    2. Immunology and Inflammation
    Mykhailo Vladymyrov, Luca Marchetti ... Britta Engelhardt
    Tools and Resources

    The endothelial blood-brain barrier (BBB) strictly controls immune cell trafficking into the central nervous system (CNS). In neuroinflammatory diseases such as multiple sclerosis, this tight control is, however, disturbed, leading to immune cell infiltration into the CNS. The development of in vitro models of the BBB combined with microfluidic devices has advanced our understanding of the cellular and molecular mechanisms mediating the multistep T-cell extravasation across the BBB. A major bottleneck of these in vitro studies is the absence of a robust and automated pipeline suitable for analyzing and quantifying the sequential interaction steps of different immune cell subsets with the BBB under physiological flow in vitro. Here, we present the under-flow migration tracker (UFMTrack) framework for studying immune cell interactions with endothelial monolayers under physiological flow. We then showcase a pipeline built based on it to study the entire multistep extravasation cascade of immune cells across brain microvascular endothelial cells under physiological flow in vitro. UFMTrack achieves 90% track reconstruction efficiency and allows for scaling due to the reduction of the analysis cost and by eliminating experimenter bias. This allowed for an in-depth analysis of all behavioral regimes involved in the multistep immune cell extravasation cascade. The study summarizes how UFMTrack can be employed to delineate the interactions of CD4+ and CD8+ T cells with the BBB under physiological flow. We also demonstrate its applicability to the other BBB models, showcasing broader applicability of the developed framework to a range of immune cell-endothelial monolayer interaction studies. The UFMTrack framework along with the generated datasets is publicly available in the corresponding repositories.