bicoid mRNA localises to the Drosophila oocyte anterior by random Dynein-mediated transport and anchoring

  1. Vítor Trovisco
  2. Katsiaryna Belaya
  3. Dmitry Nashchekin
  4. Uwe Irion
  5. George Sirinakis
  6. Richard Butler
  7. Jack J Lee
  8. Elizabeth R Gavis
  9. Daniel St Johnston  Is a corresponding author
  1. University of Cambridge, United Kingdom
  2. University of Cambridge, Germany
  3. Princeton University, United States

Abstract

Mechanisms for mRNA localization are not well understood in vivo and studies of oskar and bicoid mRNAs have been very important in this regard. This paper builds on prior work by demonstrating that bicoid RNA is transported along microtubules by dynein. Surprisingly, this is not sufficient to account for its anterior localisation at early stages because transport is non-directional, indicating that the RNA must also be anchored specifically at the anterior. bicoid mRNA assembles into mRNP particles of characteristic size at all stages of oogenesis that may be important for its transport and anchoring. This provides a new mechanism for bicoid mRNA localization, suggests a particular role for mRNP particles, and further contributes important in vivo observations on which further hypotheses and studies can be built.

Article and author information

Author details

  1. Vítor Trovisco

    The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Katsiaryna Belaya

    The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Dmitry Nashchekin

    The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Uwe Irion

    The Gurdon Institute, University of Cambridge, Cambridge, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2823-5840
  5. George Sirinakis

    The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Richard Butler

    The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Jack J Lee

    Department of Molecular Biology, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Elizabeth R Gavis

    Department of Molecular Biology, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Daniel St Johnston

    The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    d.stjohnston@gurdon.cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5582-3301

Funding

European Commission (Seventh Framework Programme (FP7), Marie Curie Intraeuropean felowship, 236621)

  • Vítor Trovisco

Biotechnology and Biological Sciences Research Council (BBSRC/EURORNAQ , BB/F010303)

  • Daniel St Johnston

Darwin Trust Scholarship

  • Katsiaryna Belaya

Wellcome (Strategic Award, 095297)

  • George Sirinakis

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Trovisco et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,045
    views
  • 768
    downloads
  • 38
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Vítor Trovisco
  2. Katsiaryna Belaya
  3. Dmitry Nashchekin
  4. Uwe Irion
  5. George Sirinakis
  6. Richard Butler
  7. Jack J Lee
  8. Elizabeth R Gavis
  9. Daniel St Johnston
(2016)
bicoid mRNA localises to the Drosophila oocyte anterior by random Dynein-mediated transport and anchoring
eLife 5:e17537.
https://doi.org/10.7554/eLife.17537

Share this article

https://doi.org/10.7554/eLife.17537

Further reading

    1. Cell Biology
    Xiaojiao Hua, Chen Zhao ... Yan Zhou
    Research Article

    The β-catenin-dependent canonical Wnt signaling is pivotal in organ development, tissue homeostasis, and cancer. Here, we identified an upstream enhancer of Ctnnb1 – the coding gene for β-catenin, named ieCtnnb1 (intestinal enhancer of Ctnnb1), which is crucial for intestinal homeostasis. ieCtnnb1 is predominantly active in the base of small intestinal crypts and throughout the epithelia of large intestine. Knockout of ieCtnnb1 led to a reduction in Ctnnb1 transcription, compromising the canonical Wnt signaling in intestinal crypts. Single-cell sequencing revealed that ieCtnnb1 knockout altered epithelial compositions and potentially compromised functions of small intestinal crypts. While deletion of ieCtnnb1 hampered epithelial turnovers in physiologic conditions, it prevented occurrence and progression of Wnt/β-catenin-driven colorectal cancers. Human ieCTNNB1 drove reporter gene expression in a pattern highly similar to mouse ieCtnnb1. ieCTNNB1 contains a single-nucleotide polymorphism associated with CTNNB1 expression levels in human gastrointestinal epithelia. The enhancer activity of ieCTNNB1 in colorectal cancer tissues was stronger than that in adjacent normal tissues. HNF4α and phosphorylated CREB1 were identified as key trans-factors binding to ieCTNNB1 and regulating CTNNB1 transcription. Together, these findings unveil an enhancer-dependent mechanism controlling the dosage of Wnt signaling and homeostasis in intestinal epithelia.

    1. Cell Biology
    2. Stem Cells and Regenerative Medicine
    Nathaniel Paul Meyer, Tania Singh ... Diane L Barber
    Research Article

    Our understanding of the transitions of human embryonic stem cells between distinct stages of pluripotency relies predominantly on regulation by transcriptional and epigenetic programs with limited insight on the role of established morphological changes. We report remodeling of the actin cytoskeleton of human embryonic stem cells (hESCs) as they transition from primed to naïve pluripotency which includes assembly of a ring of contractile actin filaments encapsulating colonies of naïve hESCs. Activity of the Arp2/3 complex is required for the actin ring, to establish uniform cell mechanics within naïve colonies, promote nuclear translocation of the Hippo pathway effectors YAP and TAZ, and effective transition to naïve pluripotency. RNA-sequencing analysis confirms that Arp2/3 complex activity regulates Hippo signaling in hESCs, and impaired naïve pluripotency with inhibited Arp2/3 complex activity is rescued by expressing a constitutively active, nuclear-localized YAP-S127A. Moreover, expression of YAP-S127A partially restores the actin filament fence with Arp2/3 complex inhibition, suggesting that actin filament remodeling is both upstream and downstream of YAP activity. These new findings on the cell biology of hESCs reveal a mechanism for cytoskeletal dynamics coordinating cell mechanics to regulate gene expression and facilitate transitions between pluripotency states.