1. Cell Biology
  2. Neuroscience
Download icon

Isoform-specific subcellular localization and function of protein kinase A identified by mosaic imaging of mouse brain

  1. Ronit Ilouz  Is a corresponding author
  2. Varda Lev-Ram
  3. Eric A Bushong
  4. Travis L Stiles
  5. Dinorah Friedmann-Morvinski
  6. Christopher Douglas
  7. Geoffrey Goldberg
  8. Mark H Ellisman
  9. Susan S Taylor  Is a corresponding author
  1. University of California, San Diego, United States
  2. The Salk Institute for Biological Studies, United States
Research Article
  • Cited 15
  • Views 1,940
  • Annotations
Cite this article as: eLife 2017;6:e17681 doi: 10.7554/eLife.17681

Abstract

Protein kinase A (PKA) plays critical roles in neuronal function that are mediated by different regulatory (R) subunits. Deficiency in either RIβ or RIIβ subunits results in distinct neuronal phenotypes. Although RIβ contributes to synaptic plasticity, it is the least studied isoform. Using isoform-specific antibodies we generated high-resolution large-scale immunohistochemical mosaic images of mouse brain that provide global views of several brain regions, including the hippocampus and cerebellum. The isoforms concentrate in discrete brain regions and we then zoom-in to show distinct patterns of subcellular localization. RIβ is enriched in dendrites and co-localizes with MAP2, whereas RIIβ is concentrated in axons. Using correlated light and electron microscopy we confirm mitochondrial and nuclear localization of RIβ in cultured neurons. To show the functional significance of nuclear localization, we demonstrate that down-regulation of RIβ, but not RIIβ, decreased CREB phosphorylation. Our study reveals how PKA isoform specificity is defined by precise localization.

Article and author information

Author details

  1. Ronit Ilouz

    Department of Pharmacology, University of California, San Diego, La Jolla, United States
    For correspondence
    rilouz@ucsd.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Varda Lev-Ram

    Department of Pharmacology, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Eric A Bushong

    Center for Research in Biological Systems, University of California, San Diego, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6195-2433
  4. Travis L Stiles

    Department of Ophthalmology, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Dinorah Friedmann-Morvinski

    Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Christopher Douglas

    Department of Ophthalmology, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Geoffrey Goldberg

    Department of Ophthalmology, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Mark H Ellisman

    Center for Research in Biological Systems, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Susan S Taylor

    Department of Pharmacology, University of California, San Diego, La Jolla, United States
    For correspondence
    staylor@ucsd.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7702-6108

Funding

National Institute of Diabetes and Digestive and Kidney Diseases (DK054441)

  • Susan S Taylor

National Institute of General Medical Sciences (P41GM103412)

  • Mark H Ellisman

National Institute of General Medical Sciences (GM082949)

  • Mark H Ellisman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments involving vertebrate animals conform to the National Institute of Health Guide for the Care and Use of Laboratory Animals (NIH publication 865-23, Bethesda, MD, USA) and were approved by the Institutional Animal Care and Use Committee (IACUC) of the University of California San Diego. Approved Animal Protocol Numbers: S03172m, S03182R.

Reviewing Editor

  1. Mary B Kennedy, California Institute of Technology, United States

Publication history

  1. Received: May 10, 2016
  2. Accepted: January 3, 2017
  3. Accepted Manuscript published: January 12, 2017 (version 1)
  4. Accepted Manuscript updated: January 13, 2017 (version 2)
  5. Version of Record published: February 9, 2017 (version 3)
  6. Version of Record updated: February 23, 2018 (version 4)

Copyright

© 2017, Ilouz et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,940
    Page views
  • 501
    Downloads
  • 15
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Xiaoshan Shi et al.
    Research Article

    The selective autophagy pathways of xenophagy and mitophagy are initiated when the adaptor NDP52 recruits the ULK1 complex to autophagic cargo. Hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS) was used to map the membrane and NDP52 binding sites of the ULK1 complex to unique regions of the coiled coil of the FIP200 subunit. Electron microscopy of the full-length ULK1 complex shows that the FIP200 coiled coil projects away from the crescent-shaped FIP200 N-terminal domain dimer. NDP52 allosterically stimulates membrane-binding by FIP200 and the ULK1 complex by promoting a more dynamic conformation of the membrane-binding portion of the FIP200 coiled coil. Giant unilamellar vesicle (GUV) reconstitution confirmed that membrane recruitment by the ULK1 complex is triggered by NDP52 engagement. These data reveal how the allosteric linkage between NDP52 and the ULK1 complex could drive the first membrane recruitment event of phagophore biogenesis in xenophagy and mitophagy.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Tatsuhisa Tsuboi et al.
    Research Article

    Mitochondria are dynamic organelles that must precisely control their protein composition according to cellular energy demand. Although nuclear-encoded mRNAs can be localized to the mitochondrial surface, the importance of this localization is unclear. As yeast switch to respiratory metabolism, there is an increase in the fraction of the cytoplasm that is mitochondrial. Our data point to this change in mitochondrial volume fraction increasing the localization of certain nuclear-encoded mRNAs to the surface of the mitochondria. We show that mitochondrial mRNA localization is necessary and sufficient to increase protein production to levels required during respiratory growth. Furthermore, we find that ribosome stalling impacts mRNA sensitivity to mitochondrial volume fraction and counterintuitively leads to enhanced protein synthesis by increasing mRNA localization to mitochondria. This points to a mechanism by which cells are able to use translation elongation and the geometric constraints of the cell to fine-tune organelle-specific gene expression through mRNA localization.