Isoform-specific subcellular localization and function of protein kinase A identified by mosaic imaging of mouse brain

  1. Ronit Ilouz  Is a corresponding author
  2. Varda Lev-Ram
  3. Eric A Bushong
  4. Travis L Stiles
  5. Dinorah Friedmann-Morvinski
  6. Christopher Douglas
  7. Geoffrey Goldberg
  8. Mark H Ellisman
  9. Susan S Taylor  Is a corresponding author
  1. University of California, San Diego, United States
  2. The Salk Institute for Biological Studies, United States

Abstract

Protein kinase A (PKA) plays critical roles in neuronal function that are mediated by different regulatory (R) subunits. Deficiency in either RIβ or RIIβ subunits results in distinct neuronal phenotypes. Although RIβ contributes to synaptic plasticity, it is the least studied isoform. Using isoform-specific antibodies we generated high-resolution large-scale immunohistochemical mosaic images of mouse brain that provide global views of several brain regions, including the hippocampus and cerebellum. The isoforms concentrate in discrete brain regions and we then zoom-in to show distinct patterns of subcellular localization. RIβ is enriched in dendrites and co-localizes with MAP2, whereas RIIβ is concentrated in axons. Using correlated light and electron microscopy we confirm mitochondrial and nuclear localization of RIβ in cultured neurons. To show the functional significance of nuclear localization, we demonstrate that down-regulation of RIβ, but not RIIβ, decreased CREB phosphorylation. Our study reveals how PKA isoform specificity is defined by precise localization.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Ronit Ilouz

    Department of Pharmacology, University of California, San Diego, La Jolla, United States
    For correspondence
    rilouz@ucsd.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Varda Lev-Ram

    Department of Pharmacology, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Eric A Bushong

    Center for Research in Biological Systems, University of California, San Diego, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6195-2433
  4. Travis L Stiles

    Department of Ophthalmology, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Dinorah Friedmann-Morvinski

    Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Christopher Douglas

    Department of Ophthalmology, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Geoffrey Goldberg

    Department of Ophthalmology, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Mark H Ellisman

    Center for Research in Biological Systems, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Susan S Taylor

    Department of Pharmacology, University of California, San Diego, La Jolla, United States
    For correspondence
    staylor@ucsd.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7702-6108

Funding

National Institute of Diabetes and Digestive and Kidney Diseases (DK054441)

  • Susan S Taylor

National Institute of General Medical Sciences (P41GM103412)

  • Mark H Ellisman

National Institute of General Medical Sciences (GM082949)

  • Mark H Ellisman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments involving vertebrate animals conform to the National Institute of Health Guide for the Care and Use of Laboratory Animals (NIH publication 865-23, Bethesda, MD, USA) and were approved by the Institutional Animal Care and Use Committee (IACUC) of the University of California San Diego. Approved Animal Protocol Numbers: S03172m, S03182R.

Copyright

© 2017, Ilouz et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,103
    views
  • 599
    downloads
  • 56
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ronit Ilouz
  2. Varda Lev-Ram
  3. Eric A Bushong
  4. Travis L Stiles
  5. Dinorah Friedmann-Morvinski
  6. Christopher Douglas
  7. Geoffrey Goldberg
  8. Mark H Ellisman
  9. Susan S Taylor
(2017)
Isoform-specific subcellular localization and function of protein kinase A identified by mosaic imaging of mouse brain
eLife 6:e17681.
https://doi.org/10.7554/eLife.17681

Share this article

https://doi.org/10.7554/eLife.17681

Further reading

    1. Cell Biology
    2. Evolutionary Biology
    Paul Richard J Yulo, Nicolas Desprat ... Heather L Hendrickson
    Research Article

    Maintenance of rod-shape in bacterial cells depends on the actin-like protein MreB. Deletion of mreB from Pseudomonas fluorescens SBW25 results in viable spherical cells of variable volume and reduced fitness. Using a combination of time-resolved microscopy and biochemical assay of peptidoglycan synthesis, we show that reduced fitness is a consequence of perturbed cell size homeostasis that arises primarily from differential growth of daughter cells. A 1000-generation selection experiment resulted in rapid restoration of fitness with derived cells retaining spherical shape. Mutations in the peptidoglycan synthesis protein Pbp1A were identified as the main route for evolutionary rescue with genetic reconstructions demonstrating causality. Compensatory pbp1A mutations that targeted transpeptidase activity enhanced homogeneity of cell wall synthesis on lateral surfaces and restored cell size homeostasis. Mechanistic explanations require enhanced understanding of why deletion of mreB causes heterogeneity in cell wall synthesis. We conclude by presenting two testable hypotheses, one of which posits that heterogeneity stems from non-functional cell wall synthesis machinery, while the second posits that the machinery is functional, albeit stalled. Overall, our data provide support for the second hypothesis and draw attention to the importance of balance between transpeptidase and glycosyltransferase functions of peptidoglycan building enzymes for cell shape determination.

    1. Cell Biology
    2. Developmental Biology
    Pavan K Nayak, Arul Subramanian, Thomas F Schilling
    Research Article

    Mechanical forces play a critical role in tendon development and function, influencing cell behavior through mechanotransduction signaling pathways and subsequent extracellular matrix (ECM) remodeling. Here we investigate the molecular mechanisms by which tenocytes in developing zebrafish embryos respond to muscle contraction forces during the onset of swimming and cranial muscle activity. Using genome-wide bulk RNA sequencing of FAC-sorted tenocytes we identify novel tenocyte markers and genes involved in tendon mechanotransduction. Embryonic tendons show dramatic changes in expression of matrix remodeling associated 5b (mxra5b), matrilin1 (matn1), and the transcription factor kruppel-like factor 2a (klf2a), as muscles start to contract. Using embryos paralyzed either by loss of muscle contractility or neuromuscular stimulation we confirm that muscle contractile forces influence the spatial and temporal expression patterns of all three genes. Quantification of these gene expression changes across tenocytes at multiple tendon entheses and myotendinous junctions reveals that their responses depend on force intensity, duration and tissue stiffness. These force-dependent feedback mechanisms in tendons, particularly in the ECM, have important implications for improved treatments of tendon injuries and atrophy.