Isoform-specific subcellular localization and function of protein kinase A identified by mosaic imaging of mouse brain

  1. Ronit Ilouz  Is a corresponding author
  2. Varda Lev-Ram
  3. Eric A Bushong
  4. Travis L Stiles
  5. Dinorah Friedmann-Morvinski
  6. Christopher Douglas
  7. Geoffrey Goldberg
  8. Mark H Ellisman
  9. Susan S Taylor  Is a corresponding author
  1. University of California, San Diego, United States
  2. The Salk Institute for Biological Studies, United States

Abstract

Protein kinase A (PKA) plays critical roles in neuronal function that are mediated by different regulatory (R) subunits. Deficiency in either RIβ or RIIβ subunits results in distinct neuronal phenotypes. Although RIβ contributes to synaptic plasticity, it is the least studied isoform. Using isoform-specific antibodies we generated high-resolution large-scale immunohistochemical mosaic images of mouse brain that provide global views of several brain regions, including the hippocampus and cerebellum. The isoforms concentrate in discrete brain regions and we then zoom-in to show distinct patterns of subcellular localization. RIβ is enriched in dendrites and co-localizes with MAP2, whereas RIIβ is concentrated in axons. Using correlated light and electron microscopy we confirm mitochondrial and nuclear localization of RIβ in cultured neurons. To show the functional significance of nuclear localization, we demonstrate that down-regulation of RIβ, but not RIIβ, decreased CREB phosphorylation. Our study reveals how PKA isoform specificity is defined by precise localization.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Ronit Ilouz

    Department of Pharmacology, University of California, San Diego, La Jolla, United States
    For correspondence
    rilouz@ucsd.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Varda Lev-Ram

    Department of Pharmacology, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Eric A Bushong

    Center for Research in Biological Systems, University of California, San Diego, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6195-2433
  4. Travis L Stiles

    Department of Ophthalmology, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Dinorah Friedmann-Morvinski

    Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Christopher Douglas

    Department of Ophthalmology, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Geoffrey Goldberg

    Department of Ophthalmology, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Mark H Ellisman

    Center for Research in Biological Systems, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Susan S Taylor

    Department of Pharmacology, University of California, San Diego, La Jolla, United States
    For correspondence
    staylor@ucsd.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7702-6108

Funding

National Institute of Diabetes and Digestive and Kidney Diseases (DK054441)

  • Susan S Taylor

National Institute of General Medical Sciences (P41GM103412)

  • Mark H Ellisman

National Institute of General Medical Sciences (GM082949)

  • Mark H Ellisman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments involving vertebrate animals conform to the National Institute of Health Guide for the Care and Use of Laboratory Animals (NIH publication 865-23, Bethesda, MD, USA) and were approved by the Institutional Animal Care and Use Committee (IACUC) of the University of California San Diego. Approved Animal Protocol Numbers: S03172m, S03182R.

Copyright

© 2017, Ilouz et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,114
    views
  • 599
    downloads
  • 57
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ronit Ilouz
  2. Varda Lev-Ram
  3. Eric A Bushong
  4. Travis L Stiles
  5. Dinorah Friedmann-Morvinski
  6. Christopher Douglas
  7. Geoffrey Goldberg
  8. Mark H Ellisman
  9. Susan S Taylor
(2017)
Isoform-specific subcellular localization and function of protein kinase A identified by mosaic imaging of mouse brain
eLife 6:e17681.
https://doi.org/10.7554/eLife.17681

Share this article

https://doi.org/10.7554/eLife.17681

Further reading

    1. Cell Biology
    2. Immunology and Inflammation
    Alejandro Rosell, Agata Adelajda Krygowska ... Esther Castellano Sanchez
    Research Article

    Macrophages are crucial in the body’s inflammatory response, with tightly regulated functions for optimal immune system performance. Our study reveals that the RAS–p110α signalling pathway, known for its involvement in various biological processes and tumourigenesis, regulates two vital aspects of the inflammatory response in macrophages: the initial monocyte movement and later-stage lysosomal function. Disrupting this pathway, either in a mouse model or through drug intervention, hampers the inflammatory response, leading to delayed resolution and the development of more severe acute inflammatory reactions in live models. This discovery uncovers a previously unknown role of the p110α isoform in immune regulation within macrophages, offering insight into the complex mechanisms governing their function during inflammation and opening new avenues for modulating inflammatory responses.

    1. Cell Biology
    Affiong Ika Oqua, Kin Chao ... Alejandra Tomas
    Research Article

    G protein-coupled receptors (GPCRs) are integral membrane proteins which closely interact with their plasma membrane lipid microenvironment. Cholesterol is a lipid enriched at the plasma membrane with pivotal roles in the control of membrane fluidity and maintenance of membrane microarchitecture, directly impacting on GPCR stability, dynamics, and function. Cholesterol extraction from pancreatic beta cells has previously been shown to disrupt the internalisation, clustering, and cAMP responses of the glucagon-like peptide-1 receptor (GLP-1R), a class B1 GPCR with key roles in the control of blood glucose levels via the potentiation of insulin secretion in beta cells and weight reduction via the modulation of brain appetite control centres. Here, we unveil the detrimental effect of a high cholesterol diet on GLP-1R-dependent glucoregulation in vivo, and the improvement in GLP-1R function that a reduction in cholesterol synthesis using simvastatin exerts in pancreatic islets. We next identify and map sites of cholesterol high occupancy and residence time on active vs inactive GLP-1Rs using coarse-grained molecular dynamics (cgMD) simulations, followed by a screen of key residues selected from these sites and detailed analyses of the effects of mutating one of these, Val229, to alanine on GLP-1R-cholesterol interactions, plasma membrane behaviours, clustering, trafficking and signalling in INS-1 832/3 rat pancreatic beta cells and primary mouse islets, unveiling an improved insulin secretion profile for the V229A mutant receptor. This study (1) highlights the role of cholesterol in regulating GLP-1R responses in vivo; (2) provides a detailed map of GLP-1R - cholesterol binding sites in model membranes; (3) validates their functional relevance in beta cells; and (4) highlights their potential as locations for the rational design of novel allosteric modulators with the capacity to fine-tune GLP-1R responses.