Exosome complex orchestrates developmental signaling to balance proliferation and differentiation during erythropoiesis

  1. Skye C McIver
  2. Koichi R Katsumura
  3. Elsa Davids
  4. Peng Liu
  5. Yoon-A Kang
  6. David Yang
  7. Emery H Bresnick  Is a corresponding author
  1. University of Wisconsin School of Medicine and Public Health, United States

Abstract

Since the highly conserved exosome complex mediates the degradation and processing of multiple classes of RNAs, it almost certainly controls diverse biological processes. How this post-transcriptional RNA-regulatory machine impacts cell fate decisions and differentiation is poorly understood. Previously, we demonstrated that exosome complex subunits confer an erythroid maturation barricade, and the erythroid transcription factor GATA-1 dismantles the barricade by transcriptionally repressing the cognate genes. While dissecting requirements for the maturation barricade in Mus musculus, we discovered that the exosome complex is a vital determinant of a developmental signaling transition that dictates proliferation and amplification versus differentiation. Exosome complex integrity in erythroid precursor cells ensures Kit receptor tyrosine kinase expression and stem cell factor/Kit signaling, while preventing responsiveness to erythropoietin-instigated signals that promote differentiation. Functioning as a gatekeeper of this developmental signaling transition, the exosome complex controls the massive production of erythroid cells that ensures organismal survival in homeostatic and stress contexts.

Article and author information

Author details

  1. Skye C McIver

    Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Koichi R Katsumura

    Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Elsa Davids

    Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Peng Liu

    Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Yoon-A Kang

    Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. David Yang

    Department of Pathology, University of Wisconsin School of Medicine and Public Health, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Emery H Bresnick

    Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, United States
    For correspondence
    ehbresni@wisc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1151-5654

Funding

National Institutes of Health (DK50107)

  • Emery H Bresnick

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Example ethics statement (Chen H., et al, PLOS ONE 7(7): e41574):This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#M02230) of the University of Wisconsin-Madison.

Copyright

© 2016, McIver et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,121
    views
  • 563
    downloads
  • 31
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Skye C McIver
  2. Koichi R Katsumura
  3. Elsa Davids
  4. Peng Liu
  5. Yoon-A Kang
  6. David Yang
  7. Emery H Bresnick
(2016)
Exosome complex orchestrates developmental signaling to balance proliferation and differentiation during erythropoiesis
eLife 5:e17877.
https://doi.org/10.7554/eLife.17877

Share this article

https://doi.org/10.7554/eLife.17877

Further reading

    1. Cell Biology
    Li Sun, Xuejin Chen ... Quan-wen Jin
    Research Article

    Mitotic anaphase onset is a key cellular process tightly regulated by multiple kinases. The involvement of mitogen-activated protein kinases (MAPKs) in this process has been established in Xenopus egg extracts. However, the detailed regulatory cascade remains elusive, and it is also unknown whether the MAPK-dependent mitotic regulation is evolutionarily conserved in the single-cell eukaryotic organisms such as fission yeast (Schizosaccharomyces pombe). Here, we show that two MAPKs in S. pombe indeed act in concert to restrain anaphase-promoting complex/cyclosome (APC/C) activity upon activation of the spindle assembly checkpoint (SAC). One MAPK, Pmk1, binds to and phosphorylates Slp1Cdc20, the co-activator of APC/C. Phosphorylation of Slp1Cdc20 by Pmk1, but not by Cdk1, promotes its subsequent ubiquitylation and degradation. Intriguingly, Pmk1-mediated phosphorylation event is also required to sustain SAC under environmental stress. Thus, our study establishes a new underlying molecular mechanism of negative regulation of APC/C by MAPK upon stress stimuli, and provides a previously unappreciated framework for regulation of anaphase entry in eukaryotic cells.

    1. Cancer Biology
    2. Cell Biology
    Alexandra Urbancokova, Terezie Hornofova ... Pavla Vasicova
    Research Article

    PML, a multifunctional protein, is crucial for forming PML-nuclear bodies involved in stress responses. Under specific conditions, PML associates with nucleolar caps formed after RNA polymerase I (RNAPI) inhibition, leading to PML-nucleolar associations (PNAs). This study investigates PNAs-inducing stimuli by exposing cells to various genotoxic stresses. We found that the most potent inducers of PNAs introduced topological stress and inhibited RNAPI. Doxorubicin, the most effective compound, induced double-strand breaks (DSBs) in the rDNA locus. PNAs co-localized with damaged rDNA, segregating it from active nucleoli. Cleaving the rDNA locus with I-PpoI confirmed rDNA damage as a genuine stimulus for PNAs. Inhibition of ATM, ATR kinases, and RAD51 reduced I-PpoI-induced PNAs, highlighting the importance of ATM/ATR-dependent nucleolar cap formation and homologous recombination (HR) in their triggering. I-PpoI-induced PNAs co-localized with rDNA DSBs positive for RPA32-pS33 but deficient in RAD51, indicating resected DNA unable to complete HR repair. Our findings suggest that PNAs form in response to persistent rDNA damage within the nucleolar cap, highlighting the interplay between PML/PNAs and rDNA alterations due to topological stress, RNAPI inhibition, and rDNA DSBs destined for HR. Cells with persistent PNAs undergo senescence, suggesting PNAs help avoid rDNA instability, with implications for tumorigenesis and aging.