Distinct combinations of variant ionotropic glutamate receptors mediate thermosensation and hygrosensation in Drosophila

  1. Zachary A Knecht
  2. Ana F Silbering
  3. Lina Ni
  4. Mason Klein
  5. Gonzalo Budelli
  6. Rati Bell
  7. Liliane Abuin
  8. Anggie J Ferrer
  9. Aravinthan DT Samuel  Is a corresponding author
  10. Richard Benton  Is a corresponding author
  11. Paul A Garrity  Is a corresponding author
  1. Brandeis University, United States
  2. University of Lausanne, Switzerland
  3. Harvard University, United States
  4. University of Miami, United States

Abstract

Ionotropic Receptors (IRs) are a large subfamily of variant ionotropic glutamate receptors present across Protostomia. While these receptors are most extensively studied for their roles in chemosensory detection, recent work has implicated two family members, IR21a and IR25a, in thermosensation in Drosophila. Here we characterize one of the most evolutionarily deeply conserved receptors, IR93a, and show that it is co-expressed and functions with IR21a and IR25a to mediate physiological and behavioral responses to cool temperatures. IR93a is also co-expressed with IR25a and a distinct receptor, IR40a, in a discrete population of sensory neurons in the sacculus, a multi-chambered pocket within the antenna. We demonstrate that this combination of receptors is required for neuronal responses to dry air and behavioral discrimination of humidity differences. Our results identify IR93a as a common component of molecularly and cellularly distinct IR pathways important for thermosensation and hygrosensation in insects.

Article and author information

Author details

  1. Zachary A Knecht

    Department of Biology, National Center for Behavioral Genomics and Volen Center for Complex Systems, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Ana F Silbering

    Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Lina Ni

    Department of Biology, National Center for Behavioral Genomics and Volen Center for Complex Systems, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Mason Klein

    Department of Physics and Center for Brain Science, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Gonzalo Budelli

    Department of Biology, National Center for Behavioral Genomics and Volen Center for Complex Systems, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Rati Bell

    Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  7. Liliane Abuin

    Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  8. Anggie J Ferrer

    Department of Physics, University of Miami, Coral Gables, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Aravinthan DT Samuel

    Department of Physics and Center for Brain Science, Harvard University, Cambridge, United States
    For correspondence
    aravisamuel@me.com
    Competing interests
    The authors declare that no competing interests exist.
  10. Richard Benton

    Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
    For correspondence
    Richard.Benton@unil.ch
    Competing interests
    The authors declare that no competing interests exist.
  11. Paul A Garrity

    National Center for Behavioral Genomics and Volen Center for Complex Systems, Department of Biology, Brandeis University, Waltham, United States
    For correspondence
    pgarrity@brandeis.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8274-6564

Funding

National Institutes of Health (F31 DC015155 01A1)

  • Zachary A Knecht

National Institutes of Health (F32 NS077835)

  • Mason Klein

Boehringer Ingelheim Fonds (PhD Fellowship)

  • Rati Bell

European Research Council (Starting Independent Researcher Grant 205202)

  • Richard Benton

European Research Council (Consolidator Grant 915094)

  • Richard Benton

National Institutes of Health (F32 GM113318)

  • Gonzalo Budelli

National Institutes of Health (P01 GM103770)

  • Aravinthan DT Samuel
  • Paul A Garrity

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Mani Ramaswami, Trinity College Dublin, Ireland

Version history

  1. Received: May 17, 2016
  2. Accepted: September 21, 2016
  3. Accepted Manuscript published: September 22, 2016 (version 1)
  4. Accepted Manuscript updated: September 23, 2016 (version 2)
  5. Version of Record published: October 5, 2016 (version 3)

Copyright

© 2016, Knecht et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,194
    views
  • 906
    downloads
  • 178
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zachary A Knecht
  2. Ana F Silbering
  3. Lina Ni
  4. Mason Klein
  5. Gonzalo Budelli
  6. Rati Bell
  7. Liliane Abuin
  8. Anggie J Ferrer
  9. Aravinthan DT Samuel
  10. Richard Benton
  11. Paul A Garrity
(2016)
Distinct combinations of variant ionotropic glutamate receptors mediate thermosensation and hygrosensation in Drosophila
eLife 5:e17879.
https://doi.org/10.7554/eLife.17879

Share this article

https://doi.org/10.7554/eLife.17879

Further reading

    1. Neuroscience
    Zhaoran Zhang, Huijun Wang ... Kunlin Wei
    Research Article

    The sensorimotor system can recalibrate itself without our conscious awareness, a type of procedural learning whose computational mechanism remains undefined. Recent findings on implicit motor adaptation, such as over-learning from small perturbations and fast saturation for increasing perturbation size, challenge existing theories based on sensory errors. We argue that perceptual error, arising from the optimal combination of movement-related cues, is the primary driver of implicit adaptation. Central to our theory is the increasing sensory uncertainty of visual cues with increasing perturbations, which was validated through perceptual psychophysics (Experiment 1). Our theory predicts the learning dynamics of implicit adaptation across a spectrum of perturbation sizes on a trial-by-trial basis (Experiment 2). It explains proprioception changes and their relation to visual perturbation (Experiment 3). By modulating visual uncertainty in perturbation, we induced unique adaptation responses in line with our model predictions (Experiment 4). Overall, our perceptual error framework outperforms existing models based on sensory errors, suggesting that perceptual error in locating one’s effector, supported by Bayesian cue integration, underpins the sensorimotor system’s implicit adaptation.

    1. Neuroscience
    Alastair MacDonald, Alina Hebling ... Kevin Yackle
    Research Article

    Intonation in speech is the control of vocal pitch to layer expressive meaning to communication, like increasing pitch to indicate a question. Also, stereotyped patterns of pitch are used to create distinct sounds with different denotations, like in tonal languages and, perhaps, the 10 sounds in the murine lexicon. A basic tone is created by exhalation through a constricted laryngeal voice box, and it is thought that more complex utterances are produced solely by dynamic changes in laryngeal tension. But perhaps, the shifting pitch also results from altering the swiftness of exhalation. Consistent with the latter model, we describe that intonation in most vocalization types follows deviations in exhalation that appear to be generated by the re-activation of the cardinal breathing muscle for inspiration. We also show that the brainstem vocalization central pattern generator, the iRO, can create this breath pattern. Consequently, ectopic activation of the iRO not only induces phonation, but also the pitch patterns that compose most of the vocalizations in the murine lexicon. These results reveal a novel brainstem mechanism for intonation.